Citation
Rosenbloom, M. J., Sullivan, E. V., & Pfefferbaum, A. (2010). Focus on the Brain: HIV Infection and Alcoholism. Alcohol Res Health, 33, 247-257.
Abstract
Both HIV infection and alcohol abuse have negative effects on the brain, with some unique to each condition and others shared by both conditions. Investigators have used magnetic resonance imaging to study the size and integrity of various brain structures in participants with alcoholism, HIV infection, or both conditions and in healthy control subjects. In these studies, alcoholics exhibited enlarged, cerebrospinal fluid-filled spaces (i.e., ventricles) as well as tissue shrinkage in various brain regions (e.g., the corpus callosum and frontal cortex), whereas study participants with asymptomatic HIV infection showed few abnormalities. Those with both HIV infection and alcoholism also had these volume abnormalities, particularly if they had experienced an AIDS-defining event. Diffusion tensor imaging, which measures the integrity of white matter fibers, has identified abnormalities of constituents of these fibers in both diseases. Again, people with HIV infection plus alcoholism show the greatest abnormalities, particularly those with a history of an AIDS-defining event. Magnetic resonance spectroscopy, which assesses the levels of brain metabolites and selective neurotransmitters, has revealed different patterns of deficits in biochemical markers of brain integrity in individuals singly affected and a compounding of effects in individuals with both HIV infection and alcoholism. Finally, neuropsychological studies have revealed impairment in selective functions involving working memory, visuospatial abilities, and movement speed that are especially likely to occur in people with comorbid HIV infection and alcoholism. Thus, alcoholism is a major risk factor for development of neuropathology and its functional sequelae in HIV-infected people.
Keywords: Alcohol abuse; alcoholism; risk factors; human immunodeficiency virus; acquired immune deficiency syndrome; brain; brain function; brain structure; neuropathology; magnetic resonance imaging; diffusion tensor imaging