Author: Han-Pang Chiu
-
SayNav: Grounding Large Language Models for Dynamic Planning to Navigation in New Environments
We present SayNav, a new approach that leverages human knowledge from Large Language Models (LLMs) for efficient generalization to complex navigation tasks in unknown large-scale environments.
-
Machine Learning Aided GPS-Denied Navigation Using Uncertainty Estimation through Deep Neural Networks
We describe and demonstrate a novel approach for generating accurate and interpretable uncertainty estimation for outputs from a DNN in real time.
-
Unsupervised Domain Adaptation for Semantic Segmentation with Pseudo Label Self-Refinement
We propose an auxiliary pseudo-label refinement network (PRN) for online refining of the pseudo labels and also localizing the pixels whose predicted labels are likely to be noisy.
-
C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation
We propose C-SFDA, a curriculum learning aided self-training framework for SFDA that adapts efficiently and reliably to changes across domains based on selective pseudo-labeling. Specifically, we employ a curriculum learning scheme to promote learning from a restricted amount of pseudo labels selected based on their reliabilities.
-
Night-Time GPS-Denied Navigation and Situational Understanding Using Vision-Enhanced Low-Light Imager
In this presentation, we describe and demonstrate a novel vision-enhanced low-light imager system to provide GPS-denied navigation and ML-based visual scene understanding capabilities for both day and night operations.
-
Vision based Navigation using Cross-View Geo-registration for Outdoor Augmented Reality and Navigation Applications
In this work, we present a new vision-based cross-view geo-localization solution matching camera images to a 2D satellite/ overhead reference image database. We present solutions for both coarse search for cold start and fine alignment for continuous refinement.
-
Cross-View Visual Geo-Localization for Outdoor Augmented Reality
We address the problem of geo-pose estimation by cross-view matching of query ground images to a geo-referenced aerial satellite image database. Recently, neural network-based methods have shown state-of-the-art performance in cross-view matching.
-
Autonomous Docking Using Learning-Based Scene Segmentation in Underground Mine Environments
This paper describes a vision-based autonomous docking solution that moves a coalmine shuttle car to the continuous miner in GPS-denied underground environments.
-
Ranging-Aided Ground Robot Navigation Using UWB Nodes at Unknown Locations
This paper describes a new ranging-aided navigation approach that does not require the locations of ranging radios.
-
Incremental Learning with Differentiable Architecture and Forgetting Search
In this paper, we show that leveraging NAS for incremental learning results in strong performance gains for classification tasks.
-
Optimized Simultaneous Aided Target Detection and Imagery based Navigation in GPS-Denied Environments
We describe and demonstrate a comprehensive optimized vision-based real-time solution to provide SATIN capabilities for current and future UAS in GPS-denied environments.
-
Cross-View and Cross-Modal Visual Geo-Localization for Augmented Reality and Robot/ Vehicle Navigation Applications
We will present methods and results for estimation of geo-location and/ or orientation for dismounts and platforms for wide area, outdoor augmented reality and other applications under GPS denied/ challenged conditions.