Project

  • SayNav: Grounding Large Language Models to Navigation in New Environments

    SayNav: Grounding Large Language Models to Navigation in New Environments

    SayNav is a novel planning framework, that leverages human knowledge from Large Language Models (LLMs) to dynamically generate step-by-step instructions for autonomous agents to complicated navigation tasks in unknown large-scale environments. It also enables efficient generalization of learning to navigate from simulation to real novel environments.   

  • Pedestrian Detection from Moving Unmanned Ground Vehicles

    Pedestrian Detection from Moving Unmanned Ground Vehicles

    SRI’s vision-based systems enable safe operations of moving unmanned ground vehicles around stationary and moving people in urban/cluttered environments. Under the Navy Explosive Ordnance Disposal project, SRI has developed a real-time, fused-sensor system that significantly improves stationary and dynamic object detection, pedestrian classification, and tracking capabilities from a moving unmanned ground vehicle (UGV). The system…

  • Vision and Language Navigation

    Vision and Language Navigation

    SASRA: Semantically-aware Spatio-temporal Reasoning Agent for Vision-and-Language Navigation in Continuous Environments  SRI International has developed a new learning-based approach to enable the mobile robot to resemble human capabilities in semantic understanding. The robot can employ semantic scene structures to reason about the world and pay particular attention to relevant semantic landmarks to develop navigation strategies.…