Current Status and Future Prospects of Electric Generators Using Electroactive Polymer Artificial Muscle

Citation

S. Chiba, M. Waki, K. Masuda and T. Ikoma, “Current status and future prospects of electric generators using electroactive polymer artificial muscle,” OCEANS’10 IEEE SYDNEY, 2010, pp. 1-5, doi: 10.1109/OCEANSSYD.2010.5603972.

Abstract

The type of electroactive polymer known as dielectric elastomers has shown considerable promise for harvesting energy from environmental sources such as ocean waves, wind, water currents, human motion, etc. The high energy density and conversion efficiency of dielectric elastomers can allow for very simple and robust “DIRECT DRIVE” generators. Various types of energy harvesting generators based on dielectric elastomers have been tested. For example, buoy-mounted generators that harvest the energy of ocean waves were tested at sea for two weeks. Each generator uses a proof-mass to provide the mechanical forces that stretch and contract the dielectric elastomer generator. Those generators operated successfully during the sea trials. The buoy-mounted generators will be scaled up to produce larger amounts of power. The use of significantly larger amounts of dielectric elastomer material to produce generator modules with outputs in the MEGAWATT at range is being investigated for application to ocean wave power systems.

Keywords: Generators, Polymers, Power generation, Dielectrics, Muscles, Power systems


Read more from SRI

  • A photo of Mary Wagner

    Recognizing the life and work of Mary Wagner 

    A cherished SRI colleague and globally respected leader in education research, Mary Wagner leaves behind an extraordinary legacy of groundbreaking work supporting children and youth with disabilities and their families.

  • Testing XRGo in a robotics laboratory

    Robots in the cleanroom

    A global health leader is exploring how SRI’s robotic telemanipulation technology can enhance pharmaceutical manufacturing.

  • SRI research aims to make generative AI more trustworthy

    Researchers have developed a new framework that reduces generative AI hallucinations by up to 32%.