FPGA acceleration for feature based processing applications

Citation

G. van der Wal et al., “FPGA acceleration for feature based processing applications,” 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, MA, USA, 2015, pp. 42-47, doi: 10.1109/CVPRW.2015.7301365.

Abstract

Feature based vision applications rely on highly efficient extraction and analysis of features from images to reach satisfactory levels of performance and latency. In this paper, we describe the implementation of an algorithm that combines distributed feature detector (D-HCD) with a rotational invariant feature descriptor (R-HOG). Based on an algorithmic comparison with other feature detectors and descriptors, we show that our algorithms have the lowest error rate for 3D aerial scene matching. We present implementation on a low-cost Zynq FPGA that achieves 15x speedup, 5x reduction in latency over a quad core CPU. Our results show the considerable promise of our proposed implementation for fast and efficient robotic and aerial drone / UAV applications.


Read more from SRI

  • A photo of Mary Wagner

    Recognizing the life and work of Mary Wagner 

    A cherished SRI colleague and globally respected leader in education research, Mary Wagner leaves behind an extraordinary legacy of groundbreaking work supporting children and youth with disabilities and their families.

  • Testing XRGo in a robotics laboratory

    Robots in the cleanroom

    A global health leader is exploring how SRI’s robotic telemanipulation technology can enhance pharmaceutical manufacturing.

  • SRI research aims to make generative AI more trustworthy

    Researchers have developed a new framework that reduces generative AI hallucinations by up to 32%.