Bootstrapping Deep Neural Networks from Image Processing and Computer Vision Pipelines

Citation

Bootstrapping Deep Neural Networks from Image Processing and Computer Vision Pipelines, K. Son; J. Hostetler; S. Chai, Association for the Advancement of Artificial Intelligence, and arxiv., Innovative Applications of Artificial Intelligence (IAAI-19), and arxiv on-line archive, Honolulu, HI, January 29-31, 2019

Abstract

Complex image processing and computer vision systems often consist of a processing pipeline of functional modules. We intend to replace parts or all of a target pipeline with deep neural networks to achieve benefits such as increased accuracy or reduced computational requirement. To acquire a large amount of labeled data necessary to train the deep neural network, we propose a workflow that leverages the target pipeline to create a significantly larger labeled training set automatically, without prior domain knowledge of the target pipeline. We show experimentally that despite the noise introduced by automated labeling and only using a very small initially labeled data set, the trained deep neural networks can achieve similar or even better performance than the components they replace, while in some cases also reducing computational requirements.


Read more from SRI