Production of the No Photofragment in the Desorption of Rdx and Hmx from Surfaces

Citation

Jason D. White, F. Ahu Akin, Harald Oser, and David R. Crosley, “Production of the NO photofragment in the desorption of RDX and HMX from surfaces,” Appl. Opt. 50, 74-81 (2011)

Abstract

A promising scheme for the remote detection of nitrate-based explosives, which have low vapor pressure, involves two lasers: the first to desorb, vaporize, and photofragment the explosive molecule and the second to create laser-induced fluorescence in the NO fragment. It is desirable to use for the first a powerful 532nm532nm frequency-doubled Nd:YAG laser. In this study, we investigate the degree of photofragmentation into NO resulting from the irradiation of the explosives RDX and HMX coated on a variety of surfaces. The desorption step is followed by femtosecond laser ionization and time-of-flight mass spectrometry to reveal the fragments produced in the first step. We find that modest laser power of 532nm532nm desorbs the explosive and produces adequate amounts of NO.


Read more from SRI

  • A photo of Mary Wagner

    Recognizing the life and work of Mary Wagner 

    A cherished SRI colleague and globally respected leader in education research, Mary Wagner leaves behind an extraordinary legacy of groundbreaking work supporting children and youth with disabilities and their families.

  • Testing XRGo in a robotics laboratory

    Robots in the cleanroom

    A global health leader is exploring how SRI’s robotic telemanipulation technology can enhance pharmaceutical manufacturing.

  • SRI research aims to make generative AI more trustworthy

    Researchers have developed a new framework that reduces generative AI hallucinations by up to 32%.