Scalable Relational Learning for Large Heterogeneous Networks

Citation

Rossi, R.; Zhou, R. Scalable Relational Learning for Large Heterogeneous Networks. IEEE International Conference on Data Science and Advanced Analytics. 10/19/2015

Abstract

Relational models for heterogeneous network data are becoming increasingly important for many real-world applications. However, existing relational learning approaches are not parallel, have scalability issues, and thus unable to handle large heterogeneous network data. In this paper, we propose parallel collective matrix factorization (PCMF) that serves as a fast and flexible framework for joint modeling of large heterogeneous networks. The PCMF learning algorithm solves for a single parameter given the others, leading to a parallel scheme that is fast, flexible, and general for a variety of relational learning tasks and heterogeneous data types. The proposed approach is carefully designed to be (a) efficient for large heterogeneous networks (linear in the total number of observations from the set of input matrices), (b) flexible as many components are interchangeable and easily adaptable, and (c) effective for a variety of applications as well as for different types of data. The experiments demonstrate the scalability, flexibility, and effectiveness of PCMF. For instance, we show that PCMF outperforms a recent state-of-the-art parallel approach in runtime, scalability, and prediction quality. Finally, the effectiveness of PCMF is shown on a number of relational learning tasks such as serving predictions in a real-time streaming fashion.


Read more from SRI

  • A photo of Mary Wagner

    Recognizing the life and work of Mary Wagner 

    A cherished SRI colleague and globally respected leader in education research, Mary Wagner leaves behind an extraordinary legacy of groundbreaking work supporting children and youth with disabilities and their families.

  • Testing XRGo in a robotics laboratory

    Robots in the cleanroom

    A global health leader is exploring how SRI’s robotic telemanipulation technology can enhance pharmaceutical manufacturing.

  • SRI research aims to make generative AI more trustworthy

    Researchers have developed a new framework that reduces generative AI hallucinations by up to 32%.