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ABSTRACT

This paper presents a formal characterization of the major concepls and con-
structs of fuzzy logic in terms of notions of distance, closeness, and similarily
between pairs of possible worlds. The formalism is a direct extension {by recogni-
tion of multiple degrees of accessibility, conceivability, or reachability} of the
major modal logic concepts of possible and necessary truth.

Given a function that maps pairs of possible worlds inio a number between
and 1, generalizing the conventional concept of an equivalence refation, the major
consiructs of fuzzy logic (conditional and unconditioned possibility distributions}
are defined in terms of this similarity relation using familiar concepts from the
mathematical theory of metric spaces. This interpretation is different in nature and
character from the typical, chance-oriented, meanings associated with probabilistic
concepts, which are grounded on the mathematical notion of set measure. The
similarity struciure defines a topological notion of continuity in the space of
possible worlds {and in that of iis subsets, i.e., propositions) that allows a form of
logical “‘extrapolation’’ between possible worlds.

This logical extrapolation operation corresponds to the major deductive rufe of
Juzzy logic — the compasitional rule of inference or generalized modus ponens of
Zadeh — an inferential operation that generalizes its classical counterpart by virtie
of its ability to be utilized when propositions representing available evidence maich
only approximately the antecedents af conditional propositions. The relations
between the similarity-based interpretation of the role of conditional possibility
distributions and the approximate injferential procedures of Baldwin are also
discussed. ‘

A straightforward extension of the theory to the case where the similarity scale
is symbolic rather than numeric is described, The problem of generating similarity
Sunctions from a given set of possibility distributions, with the latter interpreted as
defining a number of (graded) discernibility relations and the former as the result
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of combining them into a joint measure of distinguishability between possible
worlds, is briefly discussed.

KEYWORDS: fuzzy logic, semantics, modal logics, possible worlds, gen-
eralized modus ponens

INTRODUCTION

This paper presents a semantic characterization of the major concepts and
constructs of fuzzy logic in terms of notions of similarity, closeness, and
proximity between possible states of a system that is being reascned about.
Informally, a ‘“‘possible state’” (to be formalized later using the notion of
‘*possible world’”) is an assignment of a well-defined truth value (i.e., either
true or false) to all relevant declarative knowledge statements about that
system.

The primary goal that guided the research leading to the results presented in
this work was one of conceptual clarification, A great deal of energy has been
directed in the past few years to debating the methodological necessity and
relative merits of various approximate reasoning methodologies. As a result of
these exchanges, the need to consider certain nonclassical approaches has been
questioned on a variety of bases,

Recognizing the need for the development of sound semantic formalisms that
shed light on the nature of different approaches, 1 have pursued, in the past few
years, a line of theoretical research seeking to describe various approximate
reasoning methodologies using a commen framework. These investigations
have recently shown the close connection between the Dempster—Shafer [38]
calculus of evidence [35] and epistemic logics. This relationship was elucidated
by straightforward application of conventional probabilistic concepts to models
of knowledge states that distinguish between the true of a proposition and
knowledge (by rational agents) of that truth. Central to this development is the
notion of “‘possible world" used by Carnap [6] to develop logical bases for
probability theory. .

The central notion of possible state of affairs is also the conceptual basis of
the results presented in this paper, which is aimed at establishing the semantic .
bases of possibilistic logic with emphasis on the study of its possible relations
and differences, if any, with probabilistic reasoning.

The results of this investigation clearly show that possibilistic logic can be
interpreted in terms of nonprobabilistic concepts that are related to the notions
of continuity and proximity. The major functional structures of fuzzy logic,
possibility and necessity distributions,! may be.defined in terms of the more
primitive notion of similarity between possible states of a system using
constructs that are the direct extension of well-known concepts in the theory of

Mis important to temark that the scope of this work is limited to the most fundamental concepts
and constructs of fuzzy logic without examining related notions such as generalized quantifiers.
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metric spaces. The topological metric structure that is so defined may be used
to derive a sound inferential rule that is a form of logical *‘extrapolation.”
This rule is also shown to be the compositional rule of inference or generalized
modus ponens proposed by Zadeh {53]. Conversely, possibility distribu-
tions-—expressing resemblance in some specific regard—may be used to derive
the actual similarity functions, discerning between possible worlds from the
multiple points of view.

The constructs that are used to derive the interpretation presented in this
paper are formally, structurally, and conceptually different from those that
explain probabilistic reasoning, in either its objective or subjective interpreta-
tions, irrespective of methodological reliance on interval-based approaches to
represent ignorance, The latter class of methods—measuring the relative
proportion of the {(either observed or believed) occurrence of some event—are
based on the mathematical notion of set measure, while the former—seeking to
establish similarities between situations that may be used for analogical reason- -
ing—are related to the theory of distances and metric spaces.

This presentation of the relationships between similarity-based concepts and
possibilistic notions, while grounded on a formal treatment that is based on
rigorous logical and mathematical formalisms, will be kept at a level that is as
informal as possible. The purpose of this presentation style is to facilitate
comprehension of major ideas without the clutter that would otherwise need to
be introduced keep matters strictly precise. For this reason, 1 will refrain from
formal introduction of structures and axiom schemata, that, although correct
and proper, may encumber understanding of the basic concepts.

Before we proceed to the detailed consideration of semantic models, I must
briefly remark on the epistemological implication of these developments. The
present interpretation is not the only that may be advanced to define the notion
of possibility in terms of simpler concepts, nor do I claim that it may not be
sometimes possible, even desirable, to model possibilistic structures from other
bases. My intent is not to prove the conceptual superiority of one approach
over another or to argue about the relative utility of different technologies.
Rathet, I hope that these results have contributed to establish the basic
conceptual differences in the treatment of imprecise and uncertain information
that are inherent in probabilistic and possibilistic methods—the former oriented
toward quantifying believed or measured frequency of occurrence, and the
latter seeking to determine propositions, implied by the evidence, that are
similar in some sense to a hypothesis of iaterest. In other words, beyond
accidental domain-specific relations, both types of methods are needed to .
analyze and clarify the significance of imprecise and uncertain information.

APPROXIMATE REASONING AND POSSIBLE WORLDS

QOur point of departure is the model-thcoretic formalisms of modal logics.
Let us assume that declarative statements about the state, situation, or behavior



43 Enrique H. Ruspin

of a real-world system under study are symbolically represented by the letters
of some alphabet
Z={p,q,r,...}

which are combined in the customary way using the logical operators -, V, A,
-, and + (to be interpreted with their usual meanings) to derive a language
¥ (i.e., a collection of sentences). Furthermore, we augment this language by
the use of two unary operators N and II, called the necessity and possibility
operators, respectively, having usage governed by the rule
If ¢ is a sentence, then N¢ and Il¢ are also sentences,

which introduces the ability to represent different modalities for the truth of
propositions.

A model for this propositional system is a structure consisting of three

components:

1. A nonempty set of possible worlds % introduced to represent states,
situations, or behaviors of the system being modeled by our sentences. In
what follows we will refer to this set as the universe of discourse, or
universe for short. \

We will also need to consider a nonempty subset & of the universe %,
which is introduced to model the set of conceivable worlds that are
consistent with observed evidence. This set (possibly equal to the whole
universe %) will be called the evidential set, Throughout this paper, we
will assume that evidence about the world is always given by means of
conventional propositions that allow us to determine, without ambiguity,
whether a possible world either is or is not a member of the evidential
set.

2. A function (called a valuation) that assigns one and only one of the truth
values friee or false to every possible world w in the universe 4 and
every sentence ¢ in the language. Assignment of the truth value frue toa
pair {w, ¢) will be denoted w + ¢ (i.e., ¢ is true in the world w).

In what follows, we will use the same symbols to describe subsets of
possible worlds and the propositions that are true only in worlds that are
members of such subsets. For example, the symbol & will be used to
denote both the evidential set and the proposition that asserts the validity
of the corresponding evidential cobservations. Using this notation, for
example, we will write w +— & to indicate that the world w is compatible
(i.e., logically consistent) with the evidence &. Furthermore, we will use
the symbol ¥, introduced above as a set of well-formed sentences, to
denote also the power set of the universe %. Rigorously, subsets of ¥
strictly correspond to the classes of equivalence of the sentence set ¥
that are obtained by equating logically equivalent sentences. In the same
simplifying vein, we will also drop the customary distinction between

sentences—the linguistic expressions of something that may be true or
false—and propositions—the actual things being asserted.
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3. A binary relation R between possible worlds, called the accessibility,
conceivability, or reachability relation, introduced to model the seman-
tic of the modal operators N and II.

It is not necessary to review here the well-known axioms (Hughes and
Creswell [21]) that restrict the assignment of truth values to well-formed
sentences according to the rules of propositional logic. To facilitate compre-
hension of our formalism, we need to recall solely the rules that constrain
assignment of truth values to sentences formed by prefixing other valid
expressions with the modal operators, that is,

1. The senmtence ¢ is necessarily true in the possible world w (i.e.,

w  N¢) if and only if it is true in every world w’ that is related to the
world w by the relation R.
2. The sentence ¢ is possibly true in the possible world w (i.e., w  II¢)
if and only if it is true in some world w’ that is related to the world w by
the relation R.
If, for example, the relation R relates worlds that share the same (possibly
empty) subset of true sentences of the prespecified set of expressions

F= {¢1;¢2,-~~}

that is, if R(w, w") if and only if any sentence ¢ in & is either true in both w
and w’ or false in both w and w’, then the resulting system has an *‘epistemic™’
interpretation that regards related possible worlds as ‘‘being possible for all we
know'’ (i.e., observed evidence, corresponding to a subset of &, is the same
for both worlds). In this case, the necessity operator N corresponds to the
epistemic operator K of epistemic logics, with the corresponding system
having the properties of the modal system S5, which was used in the context of
probability theory as the semantic basis for the Dempster—Shafer [38] calculus
of evidence (Ruspini [35]).

If, on the other hand, the original interpretation of logical necessity —corre-
sponding to a relation R that is equal to 4 x 4, that is, that relates every pair
of possible worlds—is given to the operator N, then a proposition is necessar-
ily true if and only if it is true in every possible world.

If the relation R is chosen as

R=¢&x¢&

then this interpretation may be used to characterize approximate reascning
problems as those where a hypothesis of interest is neither necessarily true nor
necessarily false in worlds in the evidential set &, reflecting the inability of
conventional deductive techniques to unambiguously determine the truth value
of the hypothesis.?

2The notion of approximate reasoning problem is often extended to encompass situations where
deductive techniques cannot always be used because of practical limitations on computational
FESOUICES.
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In those problems, in spite of this fundamental impossibility, we may resort
to approximate reasoning methods to describe various properties of the eviden-
tial set €. For example, the probabilistic structures used by various probabilis-
tic reasoning approaches typically characterize relations of the form

MELYIE p(-#n &)

between the measures of the subsets of the evidential set & where a hypothesis
# is true or false, respectively.

Our aim wiil be to study how other structures, defining a mefric or distance
in the universe 4%, can be used to describe the nature of the evidential set. To
do so0, we will assign a different meaning to the accessibility relation, giving it
an interpretation that regards related worlds as “*similar™ or “*close’ in some
sense, We will require, however, a scheme that is richer than that provided by
a single relation so that we can extend modal notions and derive semantics
bases for fuzzy logic, which relies on concepts of degrees of matching or
closeness expressed by real numbers between 0 and 1.

In what follows we will use the symbols = and ¢ to denote strong
implication and equivalence, respectively, A proposition g strongly implies p
{denoted g = p) if and only if p is true in any world where g is. Similarly, p
is logically equivalent to g (dencted p « q) if and only if p and g are true
in the same subsct of worlds of %,

Following traditional terminology, we will say also that a proposition p is
satisfiable if there exists a possible world p such that w - p. '

EXTENDED MODALITIES

We first tum our attention to the problem of generalizing modal logic
formalisms to explain the structures and functions of fuzzy logic.

A number of authors have studied various relations between fuzzy and
modal logics. Lakoff [24], Murai et al. [28], and Schocht [36] have proposed
graded generalizations of basic modal constructs. Dubois and Prade [13, 14]
have also explored analogies between these nonstandard logics. In a recent
paper [12], they developed, in addition, a modal basis for possibility theory by
introducing fuzzy structures into modal frameworks with the goal of deriving
proof mechanisms that can be used in possibilistic reasoning.

The goal for the model presented in this paper is somewhat different from
the objectives guiding those efforts. We will seek explanations for possibilistic
constructs on the basis of previously existing notions rather than generaliza-
tions of modal frameworks by means of fuzzy constructs. The model presented
here is not based on the use of graded notions of possibility and necessity as
primitive—and, by implication, easy to understand—structures. The founda-
tion for this model is provided by a generalization of the accessibility relation,
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which is given a simple interpretation as a measure of resemblance and
proximity between possible worlds.

We will extend the notion of accessibility relation to encompass a family of
nonempty binary relations R, that are indexed by a numerical parameter «
between 0 and 1. These relations, which are nested,

R, S R; wheneverf=a

are introduced to represent different degrees of similarity, using a scheme that
is akin to that used by Lewis in his study of counterfactuals [25]. The family of
accessibility relations introduced here differs from that proposed by Lewis,
however, in its use of numerical indexes® and in the nature of the overall
modeling goals that, in Lewis's formalism, are intended to represent changes
of scale induced by consideration of different restrictive statements.

Similarity Relations

To facilitate the definition of a family of accessibility relations, we introduce

a similarity function

S:¥x ¥~ |0, 1]
assigning to each pair of possible worlds (w, w') & unique degree of similarity
between O (corresponding to maximum dissimilarity) and 1 (corresponding to
maximum similarity).

With the help of this function, we will then say that w and w’ are related to
the degree a, denoted R_(w, w), if and only if S(w, w) = a. In this way,
the relations R, have the required nesting property with R, corresponding to
the whole Cartesian product # X # (or, every possible world is at least
similar in a degree zero to every other possible world).

Some properties are required to assure that the function S has the required
semantics of a metric relationship capturing the intuitive notion of similarity or
“‘proximity.” It is first necessary to demand that the degree of similarity
between any world and itself be as high as possible, that is,

S(w,w)=1  forall win &
This property assures that every one of the accessibility relations R will be
reflexive and, following the nomenclature introduced by Zadeh for fuzzy

relations [52], we will also say that the similarity relation is reflexive.
Next, we will call for the function S to be symmetric, that is,

S(w,w) = S(w',w)  foranyworlds wand W' in ¥

*We will later see that similarities can be measured by using more general, monnumeric, scales,
For simplicity reasons, 1 will avoid at this point the introduction of more geoeral schemes that
unnccessarily complicate the exposition.
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This is a very natural requirement of any relation intended to represent a
refation of resemblance betwecn objects.

Finally, and most important, we will impose a form of ¢ransitivity require-
ment upon the similarity function § that turns it into a generalized equivalence
relation. The purpose of this restriction is to assure that S has reasonable
behavior as a metric in the universe of possible worlds. It would certainly be
surprising if, for some similarity S, we were to be told that w and w’ are very
similar and that w' and w* are also very similar, but that w does not resemble
w” at all. Clearly, there should be a lower bound on the possible values of
S(w, w") that can be expressed as a function of the values of S(w, w') and
S(w’, w7). We will express such a constraint using a numeric operation,
denoted ©, that takes as arguments two real numbers between 0 and 1 and
returns another number in the same range, that is,

@:{0,1] x [0,1] ~ [0, 1]
in the form of the inequality ]
S(w,w") = S(w, w)@S(w', w")

assumed valid for any worlds w, w’, and w" in the universe 4. Revertihg to a
modal terminology, the above transitivity constraint, which will be called
®-transitivity, may be rewritten in relational form as

Rq@ﬂgRaﬂRﬂ fOl'aﬂO‘_'-'-a,ﬂﬁl

making obvious its generalization of the conventional definition of transitivity
for ordinary binary relations, that is,

RS Re:R

Since the role of @, through recursive application, is that of providing a
lower bound for the similarity between the two end members w, and w, of a
chain of possible worlds [w;, w,, ..., w,], it is obvious that the operation @
should be commutative and associative. Furthermore, it should also be nonde-
creasing in each argument, as it is reasonable to ask that the desired lower
bound be a monotonic function of its argpuments. Finally, it is also desirable to
ask that

a®l = 1®a =«

that is, that the values of the similarities of two indistinguishable objects to a
third should be the same. These requirements are equivalent to demanding that
the operation @ be a triangular norm (Schweizer and Sklar [37]), or T-norm,
for short.

Triangular norms, originally introduced in the theory of probabilistic metric
spaces to treat certain statistical problems, play a distinguished role in [0, 1]-
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multivalued logics (Alsina and Trillas [1}, Dubois and Prade [11], Gaines [17],
Rescher [31]) as the result of imposing reasonable requirements upon opera-
tions that produce the truth value of the conjunction of two expressions as a
function of the truth values of the conjuncts. Furthermore, generalized similar-
ity relations (called B-R relations by Zadeh [54]) also have an important
function, to be examined further later in this paper, in the generalization of the
inferential rule of modus ponens (Dubois and Prade [10], Trillas and Valverde
[43]). Our axiomatic derivation for the requirement that ® be a T-norm is
based, however, solely on metric considerations, applied here to a space of
possible worlds but valid in general metric spaces.
From the axioms of triangular norms, it is easy to see that

«®f < min(«, 8)

which shows that the minimum function, itself a T-norm, is the largest element
in this class of operations. Its minimal element, on the other hand, is the
noncontinuous function ® defined by

o ifg=1
a®f = |8 ifee=1
0 otherwise

In what follows, we will also impose a most reasonable additional assump-
tion of continuity of ® with respect to its arguments (i.e., why should there be
a jump in the value of a lower bound provided by ® when the values of its
arguments are slightly changed?). The class of continuous T-norms does not
have 2 minimal element, although under certain additional assumptions (requir-
ing T-norms to be also Jcopulas [37]), the inequality

max({o + 8 - 1,0) < «®B

also holds true, showing that certain important continuous T-norms lie between
that of the R,-logic of Lukasiewicz (see [17]) and that of the original fuzzy
logic propesed by Zadeh [53].

Continuous triangular norms play a significant part in the theories of pattern
recognition and automatic classification (Ruspini [32]). In [33} I proposed the
use of generalized similarity relations based on the T-norm of Lukasiewicz to
generalize existing classification techniques—based on the mapping of a simi-
larity function into a conventional equivalence relation—to the fuzzy domain
by mapping these T-norms (which 1 called likeness relations) into generalized
fuzzy partitions. Bezdek and Harris [3] independently studied axiomatic ap-
proaches to cluster analysis based on the use of continuous T-norms.

I have also studied [34] the possible relation between the multivalued logic
and similarity related aspects of T-norms, and suggested that the degrees of
similarity between two objects A4 and B may be regarded as the “*degree of
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truth” of the vague proposition
** A is similar to B.”

Having argued that S should have the structure of a generalized equivalence
relation, we will assume, mainly for reasons of simplicity, that the function S
is the dual of a ““true’’ distance, that is, that

S(w,w) = lifand only if w = w'

This restriction, which is not substantial, is introduced primarily to assure that
different possible worlds may be distinpuished by means of the function S.
Otherwise, the equivalence relation that relates two worlds w and w” if and
only if S(w, w) = 1 may be used to partition our universe % into ‘‘indis-
tinguishable'’ nonintersecting classes, indicating that our metric cannot dis-
criminate between significant differences in system state.

Before closing our presentation of generalized similarity relations, it is
important to remark upon the close relation between the notion of similarity
and that of distance. If a function § is defined in terms of a similarity function
S by the simple relation

6=1-S8
then it is easy to see that the function § has the properties of a metric or
distance. This is evident if the operation ® corresponds to the T-norm of
Lukasiewicz, since the transitivity condition is equivalent to the well-known
triangular inequality, that is,
8(w, w*) < 6(w, w) + 5(w', w")
If other T-normns are used, even stronger inequalities hold, with the so-called
‘‘ultrametric inequality”’
8(w,w) < maJ_c[B(w, w), 6(w', w"')]

being valid for the T-norm of Zadeh. In this case, #ach of the relations in the
family R_ (known in fuzzy set theory as the c-cut® of the similarity S) is a
conventional equivalence relation. This fact was exploited, prior to the intro-
duction of fuzzy set theory and fuzzy cluster analysis, by a variety of clustering
procedures of the ‘‘single-link’’ type (Jardine and Sibson [22], Sokal and
Sneath [40]).

Possible and Necessary Similarity -

Our semantic formalization needs require the introduction of constructs to
indicate the extent by which a concept exemplifies, illustrates, or is an

“The a-cut [46] of a fuzzy set p: %~ [0, 1] is the conventional set of all points w such that
p{w) = a. A similar concept is defined for relations as subsets of a product space & X .
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adequate model of another concept. QOur interpretations will therefore be
oriented toward characterization of the degree to which a concept can be said
to be a good example of another concept with the purpose of defining vague
concepts by means of measures of proximity between defined and defining
concepts. In our treatment, each of the multiple ‘‘definiens” will be a
conventional proposition corresponding to a subset of possible worlds. It is
conceivable, however, that new vague concepts might also be described metric
relations to other vague concepts.

The required constructs are based on the idea that whenever p and g are
propositions such that p = g, then any p-world is an ‘*‘example” of a
g-world, This basic notion will be generalized by the introduction of modal
structures that define to what degree possible worlds that satisfy a certain
proposition g fit a vague concept. Some of those possible worlds are *‘para-
digmatic™’ of the vague concept, that is, they fit it to a degree equal to 1 in the
same sense that we may say, for example, that somebody whose height is 7 ft
is definitely “*tall.” If we use a notion of graded fitness, however, certain
worlds will fit the concept to a degree, that is, they resemble (or are similar to)
some paradigmatic example of the vague concept.

The conventional interpretation of possibility must be modified, therefore, to
capture the idea that a particular possible world is similar in some degree to
another world that satisfies a *‘reference’” proposition.

More generally, however, we will be interested in relations of similarity
between pairs of subsets of possible worlds rather than between pairs of
possible worlds. This requirement complicates matters considerably, because
we will be forced to consider both the ** validity”” of a proposition p in some
world where another proposition ¢ is true and its applicability in every world
where g is true. In the former case, we will care about the existence of
g-worlds that are similar to some degree to some p-world, whereas in the
latter we will be concerned with the size of the minimum neighborhood of p
{as a subset of the universe 4/) that fully encloses the subset g.

This dual concern for what may possibly apply and what must necessarily
hold—an essential aspect of modal logic—is typical of situations where
relationships between ensembles of objects are described in terms of relations
between their mermbers. In the probability calculus, for example, knowledge of
probabilities over certain families of subsets provides ‘‘sharp’ upper and
lower bounds (called lower and upper probabilities, tespectively) for the
probabilities of other subsets—an important fact in the extension of set
measures to larper domains (Halmos [19]). The role and properties of these
bounds in the Dempster-Shafer [38] calculus of evidence is well known,
having been described in the original paper of Dempster [8], related to
concepts of modal logic by Ruspini [35], and being also the subjects of
considerable formal study (Choquet [7]) as mathematical structures,
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Analogies between the role of probabilistic bounds (i.e., bounds for proba-
bility values) and possibility /necessity distributions, have been the source of
much of the confusion about the need for possibilistic schemes. Each
upper flower-bound pair, however, leads to a substantially different description
of the nature of a subset of possible worlds, being, in either case, measures
that arise naturally when pointwise properties are extended to set partitions.

General properties of these measures have been studied by Dubois and Prade

[15] in the context of approximate reasoning and in other regards by Pavlak
[301.

Our generalizations of the notions of possibility and necessity are related to
the so-called de re (Hughes and Creswel [21]) interpretation of the statement
“If g, then p is possible’” as the modal propositional relation

g=1p

We will say that the proposition g implies, or is a necessary model of, the
proposition p to the degree « if and only if for every ¢-world w there exists a
p-world w’ that is at least a-similar to it [i.e., S(w, w) = «] or, equivalently,
whenever

g=1l,p

Similarly, we will say that the proposition ¢ is consistent with, or is a
possible model of, the proposition p fo the degree o if and only there exist
a g-world w and a p-world w' that are at least o-similar or, equivalently,
whenever

~(p=-11,q)

The similarity function that we have introduced in the universe % provides
us with a simple mechanism to quantify both the extent of *'inclusion’ and that
of the *‘intersection’’ between pairs of subsets of possible worlds.®

Possibilistic Implication and Consistency
The notion of subset inclusion and its related concept of set identity are of

central importance in deductive logic, since subsets of possible worlds are
formally equivalent to propositions with subset inclusion and-identity corre-

*Note that our characterizations of both possibility and necessity distributions are based in the
gnodal possibility operators I1,,.

For reasons that by mow should be cvident, we will not need to introduce a concept of
**unconditioned possibility™ although it would be easy to do so using ¢ = %. Being concerned
with the power of certain propositions to exemplify other conditions, we will not have much
occassion to deal with the strength of tautologies in that regard.
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sponding to logical implication and equivalence, respectively. These proposi-
tional relationships are the basis of derivation rules such as the modus ponens.
The notion of intersection plays a similar role in modal analyses because of its
ability to express the potential validity of a statement.

Classical accounts, however, recognize only two ‘‘degrees”™ of inclusion
corresponding to the cases when either a set ¢ is a subset of another set p or it
is not, with a similar dichotomy applying to degrees of intersection. Qur
_generalization exploits the metric structures defined between sets of possible
worlds by introducing measures that describe a subset as enclosed in a
neighborhood (of some size) of another set while intersecting another of its
neighborhoods (of *‘smaller” size).” The problem of measuring the *‘size’’ of
those neighborhoods is the subject of our immediate considerations.

DEGREE OF IMPLICATION Our definition of partial implication between
propositions was based on conditions that determine whether, given two
propositions p and g, one of them implies the other to the same value o. In
particular, since every wotld w is always similar in a degree that is at least
equal to zero to any other world w’, it is always true that any proposition g
implies any other proposition p to the degree zero. It is often the case,
however, that the degree of implication between p and g is at least equal to
some certain positive value o

If we want to generalize procedures based on inclusion relationships, such as
the modus ponens, in an efficient fashion, we will need to measure the
“‘gptimal’” (or maximum) value of the parameter o such that g implies p to
the degree «. This value is a measure of the degree to which the set of all
p-worlds must be *‘stretched’’ to encompass the set of all g-worlds. The least
upper bound of the values of the similarities between any g-world w' and some
p-world w is given by the degree of implication function:

Dermerion 1 The degree of implication of p by g is the value

1(plg) = inf sup S(w,w)

wi-g wkp

Defined in this way, the degree of implication I | ¢) is a measure of the
“‘minimal amount’’ of stretching required to reach a p-world from any
g-world, in the sense that if 8 < I( p| g), then

g=Ip

"1t is important to recall that, owing o our reliance on similarity rather than on the dual notion of
dissimilarity or distance, high values of o correspond to low values of *'stretching”’ or to smaller
set neighborhoods.
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Furthermore, « is the largest real value for which the above statement may be

made.
As the following theorem makes clearer, this function provides the basis for

the generalization of the modus ponens. This truth-derivation procedure may
be thought of as an expression of the nesting relationships that hold between
the sizes of neighborhoods of such subsets.

TreoreM 1 The degree of implication function,
I: #x 2~ [0,1]
has the following properties: .
G Ifp=r thenlfp|q) =< Ifr|q)
@) Ifp=r, thenXp|q) = Ip|r)
(i) I(p|g) = Ifp| )®I(r| q)

where p, g, and r are any satisfiable propositions.

Proof The first two properties are an immediate consequence of the
definition of degree of implication. To prove the third, observe that by
definition of similarity,

S(w,w) = S(w, w)OS(w*, w)
for any worlds w, w’, and w".

Taking the supremum on both sides of this inequality with respect to all
worlds w - p, it follows, because @ is continuous, that -

sup S(w, w') = [ sup S(w, w*) |®@S(w*, w)

whHp wHp

Since this expression is true, in particular, for all worlds w"  r, it is true that

sup S(w, w') = [ inf sup S(w,w")|©S(#w, w')

whp W ET wip
=1(p| r)@S(#, w)

where W is any world such that # - r.
From this inequality, it follows, since ® is continuous, that

Sl:p S(w,w) =z I(p[r)®[sx'1_pS(w w)]

’

Taking now the infimum on both sides of this expression over all worlds w
such that w' - g, it is easy to see, using again the continuity of @, that

inf sup S(w, w) = I(plr)®[ inf sup S(, w’)]
Whd Gr

Whq wip

proving the ®-transitivity of L.
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Note, that since I{g | g) = 1 for any proposition g, the following statement
is also true.

CoroLLarY If p and g are propositions in ¥, then
I(p|q) = sup[I{p|r)®I(r|q)]
r
Notice also that if I{p |q) = 1, then
sup S(w,w) =1 foralw g

wHp
Under minimal assumptions (assuring that the supremum operation is actually a
maximization), this relation is equivalent to stating that g strongly implies p,
or that any g-world is also a p-world. )

The nonsymmetric function I measures the extent to which every world w'.
in a certain class resembles some world w {dependent on w") in a reference
class, explicating the nature of the nonsymmetric assessments (Tversky [44])
found in psychological experimentation when subjects are asked to evaluate the
degree to which an object *‘resembles’” another. The results obtained in those
experiments suggest that human beings, when assessing similarity between
objects, use one of them (or a class of similar objects) as a reference landmark
to describe the other. Such asymmetries might be explained by noticing that, in
general, I(p | g) # I{g | p), indicating that the stronger stimulus might gener-
ally be used to construct a reference class, which is then used to describe other
stimuli.

The degree of implication of one proposition by another can be readily used
to generate a measure of similarity between propositions that generalizes our
original measure of similarity between possible worlds:

S(p, q) = min[l(p|q),X(g| )]

quantifying the degree by which the propositions p and g are equivalent. It
can be readily proved (Valverde [45]) from its definition and from the
transitivity property of I that § is a reflexive, symmetric, and ®-transitive
function between subsets of possible worlds. This similarity function is the
dual of the well-known Hausdorff distance, defined between subsets of a
metric as a function of the distance between pairs of their members (Dieudonné
[91), which is given by the expression

5(4, 8) = max{[sp it o(x, )], [sop o, )]}

The result expressed by the transitive property of the degree of implication
may be stated using modal notation in the form

g=M, rand r=THg;p implythat g =T, 0P
as the simplest form of the generalized modus ponens rule of Zadeh.
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N

Figure 1. The generalized modus ponens.

The relationship between this rule and the classical modus ponens is easier
to perceive if it is remembered that classical conditional propositions of the
form “‘If g, then p’’ simply state that the set of g-worlds is a subset of the set
of p-worlds. Such relationships of inclusion can also be described in metric
terms by saying that every g-world has a p-world (i.e., itself) that is as similar
as possible to it.

Logic structures, however, only allow us to say either that g implies p or
that g implies its negation ~ p, or that neither of those statements is true. By
contrast, similarity relations allow measurement of the amount by which a set
must be “‘stretehed’’ (as illustrated in Figure 1) to enclose another set. Using
such metrics, we can describe the generalized modus ponens as a relation
between the stretching required to reach p from any point of the set r, the
stretching required to reach r from any point of the set g, and the stretching
required to reach p from any point of the set g.

In the section Generalized Inference, we will derive alternative expressions
for the generalized modus ponens that allow us to propagate both measures
characterizing degree of implication and degree of consistency; a dual concept
that plays, with respect to the notien of possibility, the function that is fulfilled
by the degree of implication function with respect to necessity. In those
derivations, by introducing sharper bounds for certain conditional concepts, we
will also be able to improve the quality of the bounds provided by generalized
modus ponens rules while being closer in spirit to its usual fuzzy-logic
formulation.

DEGREE OF CONSISTENCY A notion that is dual to that of degree of
implication is given by a function that measures the pointwise proximity
between pairs of possible worlds from an *‘optimistic’’ point of view character-

~ izing the degree to which statements that are true in some worlds may apply in

others. By contrast, the degree of implication measures the extent to which
statements that are tree in p-worlds must hold in g-worlds.

Derinmion 2 The degree of consistency of p and g is the value

C(p|g) = sup sup S(w,w)

Wi Wi-p

An immediate consequence of this definition that C(-| -) is a symmetric
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function that is increasingly monotonic in both arguments (with respect to the
=). It is also easy to see that the values of the degree of consistency function

are never smaller than the corresponding values of the degree of consistence
function,

plg) =C(rlq)

as the amount of stretching required to reach p from some ‘“‘convenient'’
g-world is smaller (i.e., higher values of §) than that required to reach p from
any g-world. In general, however, the degree of consistency function is not
transitive, preventing the statement of a *‘compatibility”” counterpart of the
generalized modus ponens rule. Its relationship with the degree of implication
function expressed by the expression

C(plq) = sup I{p|w) = supI{g|w)

wWkg Wp

will permit us, nonetheless, to derive a useful bound-propagation expression.

POSSIBILITY AND NECESSITY DISTRIBUTIONS

This section presents interpretations of the major constructs of fuzzy
logic—possibility and necessity distributions—in terms of similarity-based
structures. Possibility and necessity distributions are functions that measure the
proximity of either all or some of the worlds in the evidential set to worlds in
other sets that are employed as reference landmarks.

The role played by possibility and necessity distributions is similar to that
performed by lower and upper bounds of probability distributions (or by the
belief and plausibility functions of the Dempster-Shafer calculus of evidence)
with respect to probability distributions. The essential difference between these
bounds and those provided by possibility /necessity pairs lies in the fundamen-
tally dissimilar character of what is being bound —metric structures relating
pairs of worlds in one case and measures of set size in the other. Furthermore,
in the model of possibilistic structures that is presented in this paper, necessity
{possibility) distributions are any lower (upper) bounds of a certain metric
function rather than its **best’” or *‘sharpest’’ bounds. The operations of fuzzy
logic allow computation of bounds for some of these measures as a function of
bounds of other measures.

Inverse of a Triangular Norm

When working in ordinary metric spaces, it is often convenient to express
the conventional statement of the triangular inequality,

(w,w) < 6(w,w") + 8(w", w)




TR A P B 8 SRS 1 . v 1

62 Enrique H. Ruspini

Table 1. Triangular Norms, Conorms, and Pseudoinverses

Name T-Norm a® b Concerm a ® b Pseudoinverse a@ b
Lukasiewicz max{ag + b — 1,0)) min{a + b, 1) min(l +a - 5,1)
Product ab a+b-ab a/b ifb>a

1 otherwise
Zadeh min{a, b) max{a, b) a ifb>a
1 otherwise

in the equivalent form )
&(w,w) = |8(w, w") — 8(w', W) |,

which utilizes a form of inverse (i.e., the subtraction operator —) of the
function used to express the original inequality (i.e., the addition operator +).
This notion of inverse can be directly generalized (Schweizer and Skiar [37]) to
provide us with the tools required to define possibility and necessity functions
and to derive useful forms of the generalized modus ponens involving either
type of these constructs.

DermrrioN 3 If ® is g triangular norm, its pseudoinverse & is the
Junction defined over pairs of numbers in the unit interval of the real
line by the expression

a@b = sup{c: b®c < g}

From this definition it is clear that a@®b is nondecreasing in « and
nonincreasing in b. Furthermore, ¢@®0 =1 and a® 1 =a for any « in -
[0, 1]. Other important properties of the pseudoinverse function are given in
the works of Schweizer and Sklar [37], Trillas and Valverde [43], and
Valverde [45].

Examples of the pseudoinverses of important triangular norms are given in
Table 1 together with the corresponding conorms.

Unconditioned Necessity Distributions

‘We introduce first a family of functions that bound from below the value of
the similarity between any evidential world in ¢ and some world where
another proposition p is true. These unconditioned necessity distributions are
lower bounds for values of the degree of implication I{ p | &), which measures
the extent to which statements that are true in a reference set (i.e., the subset of
p-worlds) must hold in the evidential set,

As observed before, whenever I(p| &) =1, it is true, under minimal
assumptions, that the evidential subset & is a subset of the set of all p-worlds,
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or that p necessarily holds in &£. If, on the other hand, I{ p| €} = @ < 1, then
p must be stretched a certain amount—with smaller e comesponding to
- greater stretching—in order for one of its neighborhoods to encompass &.

Dermrion 4 If € is an evidentiel set, then a function Nec(-) defined

over propositions in the language ¥ is called an unconditioned necessity -
distribution for & if

Nec(p) = I{p| &)

Unconditioned Possibility Distributions

The dual counterpart of the unconditioned necessity distribution is provided
by upper bounds of the degree of consistency C{ p| &). Whenever C(p}¢) =
1, it is easy to see that, under minimal assumptions, there exists a p-world w
that is in the evidential set & or, equivalently, that p (for all we know) is
possibly true. If, on the other hand, C(p| &) = @ < 1, then there exists a
neighborhood (of ‘‘size” «) of some p-world that intersects the evidential set.

Dermntrion 5 If € is an evidential set, then a function Poss(+) defined
over propositions in the language ¥ is called an unconditioned possibility
distribution for & if

Poss(p) = C(p|¢)

Since the value Poss(p) of any possibility function Poss(+) is an upper bound
of the value C(p|¢) of the degree of consistence, the corresponding value
Nec(p) of any necessity function Nec(-) is a lower bound of I(p | q), it follows
that values of a possibility function can never be smaller than the correspond-
ing values of any necessity function, that is, that

Nec( p) < Poss(p)

Properties of Possibility and Necessity Distributions

In this subsection we will develop similarity-based interpretations for some
basic formulas of possibilistic calculus. These expressions may be thought of
as mechanisms that allow the extension of a partially known possibility
distribution. For example, the property that

max|Poss( p), Poss(g)] = C(pVvg|¢)
which is proved below, is the similarity interpretation of the standard rule that
allows computation of the value of the possibility of a disjunction in fuzzy
logic, that is,

Poss( pV g) = max|Poss( p), Poss(g)]



64 Enrique H. Ruspini
TueoreMm 2 If p and q are propositions, and if the quantities Poss( p),
Poss(q), Nec{ p), and Nec(q) are such that

Nec(p) = I(p|¢), Nec(q) < I{q} ¢}

Poss(p) = C(p|€)}, Poss(q) = C(g|¢&)

then the following statements (similarity-based interpretations bf the
basic laws of fuzzy logic) are valid:

max[Nec( p), Nec(q}] =I(pvg|¢)
max|Poss( p}, Poss(q)] = C(pV gq|¢)
min|Poss( p}, Poss(q)] = C(pAg|&)

Proof Note first that since C(-| *) is nondecreasing (with respect to the
= order) in its arguments, it is true that

Poss(p) = C(p|¢€) = C(pAg|¢)
Poss(q) = C(q|¢) = C(pAg| ¢}

whenever p A g is satisfiable, from which it is easy to see that

min[Poss(p}, Poss(g)] = C(pAg)é)

The corresponding result is obvious when p A g is nonsatisfiable.
A similar argument shows, for necessity functions, that

max|Nee( ), Nec(q)] = 1(pV 1)

To prove the disjunctive law for possibilities, notice that if f is any function
mapping elements of a general domain D into real numbers, then

sup{f(d): de A U B} = max[sup{f(d): deA},sup{f(d)}: deB}]

From this equality, it is easy to see that if Poss(p) and Poss(q) are upper
bounds of X(p| €) and I(q | &), respectively, then

max|Poss( p), Poss(q}] = C(pVvg|¢)
which completes the proof of the theorem. ||

Note, however, that another law commonly given as an axiom for necessity
fonctions does not hold valid in our interpretation. As illustrated in Figure 2,
the distance from a point to the intersection of two sets may be strictly larger
than the distance to either set (i.e., the similarity will be strictly smaller). In
general, therefore,

min[Nec( p), Nec(q)] £ I(pAg|€)
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Figure 2; Failure of conjunctive necessity.

making invalid, under this interpretation, the conjunctive law for necessities
{Dubois and Prade [11])

Nec(pAg) = min[Nec(P). N&(Q)]

We may also pote in this regard that the similarity-based model that is
discussed here does not make use of the notion of negation either as a
mechanism to generate dual concepts or in its own right as an important logical
concept. It is my intent to study, in the immediate future, alternative models in

which notions of negation and maximal dissimilarity play more substantive
roles.

Conditional Possibilities and Necessities

The concepts of conditional possibility and necessity are closely related to
the previously introduced unconditioned structures. These structures may be
thought of as a characterization of the proximity of 2 world w to some or all of
the worlds where a proposition p is true, given that w is similar in the
degree I to the evidential set & (i.e., w &). With this fact in mind, we
could have used the somewhat baroque formulation

C(pl¢) = sup [I{p| w)OI(¢ | w)]
W&
to define unconditioned possibility distributions—a rather unnecessary effort if
we consider that (& | w) = 1| whenever w i~ &, showing its obvious equiva-
lence to the simpler form used in the previous section. In spite of such
observation, the above identity is important in understanding the purpose of the
definitions that follow, Those definitions interpret conditional possibilities and
necessities as a measure of the proximity of worlds on the evidential set & to
(some or all) worlds satisfying a (conditioned) proposition p relative to their
proximity to (some or all of) the worlds that satisfy another (conditioning)
proposition g.
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Figure 3. Similarities as viewed from the evidential set.

The mechanism used to specify that relationship, which is closely related in
spirit to results of Valverde [45] on the structure of indistinguishability
relations, is based on the pseudoinverse function introduced earlier. The basic
idea used by these definitions is also illustrated in Figure 3, where, from the
perspective of the evidential world w, the similarity between the p-world u
and the g-world v is estimated by means of an inequality that generalizes the
*‘absolute value’’ form of the triangular inequality, '

8(u,v) = | 8(u, w) — 8(v, w)|
to its similarity-based form
S(u,v) < min[ S(u, w) @S(v, w), S(v, w) QS(u, “’)]_

The required interplay between similarities to conditioning and conditioned
sets is captured by the following definitions.

DerFintrioN 6 Let & be an evidential set. A function Nec(-| - ) map-
ping pairs of propositions in the language & into [0,1) is called a
conditional necessity distribution for & if

Nec(q| p) s inf [I(q| w)D1(p|w)]

Jor any propositions p and qin ¥.

Dermirion 7 Let & be an evidential set. A function Poss(:| - ) map-
ping pairs of propositions in the language % into [0,1] is called a
conditional possibility distribution for & if

Poss(g| p) = s?_p{[l(ql w)QI(p|w)]

Jfor any propositions p and q in .

It is easy to see from these definitions that the values of a conditional
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necessity distribution are never larger than the corresponding values of a
conditional possibility distribution, that is,

Nec(g] p) < Poss(g| p)
Furthermore, since I(- | - ) is @-transitive, it is

I(g|w) =1(q| p)®I(p|w)

From this inequality and the definition of psuedoinverse of a triangular norm, it
is easy to see that I(g | p) is a conditional necessity function, showing also that
the bounds provided by the evidential-set perspective are better than those that
can be obtained by direct use of the degree of implication as the definition of
conditional necessity.?

Note also that if Nec(p) = 1, indicating that I(p| &) =1, and if
Nec(g ) p) = 1, then the above definition of conditional necessity shows that
I{g| ¢) = 1, indicating that Nec(q) may be taken to be equal to 1, thus
generalizing the well-known axiom (consequential closure) of certain modal
systems (e.g., the system T, as discussed in Hughes and Creswell [21])

I Npand N(p— q), then Nqg.

The definitions above can also be further interpreted as a way to compare the
similarities between evidential worlds and those in the conditioning and
conditioned sets by noting that whenever

I{glw)=1(p|w)

for every evidential world w - ¢, then Nec(g | p) may be chosen to be equal
to 1. Similarly, if there exists some world w - & where this inequality holds,
then it is Poss(g | p) = 1. In either case, however, the maximum value for the
conditional distribution (i.e., 1) is reached when the proximity of one eviden-
tial world w, in the case of possibilities, or of every one of them, in the case of
necessities, to a world w, in the conditioned set exceeds the proximity of wto
the conditioning set p. In either case, once again returning to a2n apparent
notational overkill, we may state this fact by means of the identity function 7
in the unit interval:

7:[0,1] = [0,1] ;e =
in the form
I(g|w) = 7(I(p| w))
for some w - ¢ in the case of possibilities, with the same inequality holding

*A dual result for possibilities involving €{g | p) does not hold in general. It is easy to see,
however, that C{g | £)AI(p| &) is a possibility function for ¢ given p.
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lglw)

P

0 piw) !

Figure 4. Examples of possible similarity relationships between conditioning and
conditioned sets.

for every w - & in the case of necessities. We can, however, conceive of

other functions
v:[0,1] = [0,1] : @ = v(a)

with y(x) = « to specify a stronger form of implication, as illustrated in
Figure 4, that is,

I(q|w) =~(I(p|w))

Similarly, we can also conceive of functions  with ¥(«) = « that can be
used to model weaker forms of implication.

Possibilistic calculi based on the propagation of truth mappings of this type,
first proposed by Baldwin [2], are utilized in the RUM (Bonissone and Decker
[4], Bonissone et al. [5]) and MILORD (Godo et al. [18]) expert systems. The
particular case when -y = 7, stating that every a-cut of the conditioning
proposition p is fully enclosed (in the conventional sense) in the a-cut of the
conditioned proposition g, has been called truth mapping in fuzzy logic
literature.

The primary purpose of conditional distributions, however, is to provide a
quantitative measure of the degree to which one proposition may be said to
imply another with a view to extending inferential procedures by means of
structures that superimpose the topological notion of continuity upon a logical
framework concerned with propositional validity.

GENERALIZED INFERENCE

The major inferential tool of fuzzy logic is the compositional rule of
inference of Zadeh [53), which generalizes the corresponding classical rule of
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inference by its ability to infer valid statements even when a perfect match
between facts and rule antecedent does not exist, that is, from

p
p—q
q

to its *“‘approximate’’ version

pl
p—q
q
where p’ and ¢ are similar to p and ¢, respectively. In this sense, the
generalized modus ponens operates as an *‘interpolation”’ (or, more precisely,
as an “‘extrapolation’’) procedure in possible-world space.

Unlike the interpolation procedures of numerical analysis, however, which
yield estimates of function value, this extrapolation procedure approximates
truth in the sense that it produces a proposition that is more general than the
consequent of the inferential rule but resembles it to some degree (which is a
function of the degree to which p’ resembles p). The ‘‘extrapolated conclu-
sion,” however, is a correctly derived proposition, that is, the result of a
sound logical procedure rather than of an approximate heuristic technique.

’

Generalized Modus Ponens

The theorems that are proved below are based on the use of a family 2 of
propositions that partitions the universe of discourse % in the sense that every
possible world will satisfy at least one proposition in &.

Dervrrion 8 If @ is a subset of satisfiable propositions in % such that
if w is a possible world in the universe %, then there exists a proposition
pin 2 such that w  p, then the family # is called a panition of %.

These results make use of information such as the values of the unconditioned
" necessity or possibility distributions for antecedent propositions p in the
family # together with the values Nec(q | p) or, respectively, Poss(g | p) to
‘‘extend’’ the unconditioned distributions to the ‘‘consequent™ proposition g.
In this sense, these findings interpret, in the same spirit used in Theorem 2 for
other basic laws, the generalized modus ponens laws of fuzzy logic:

Nec(g) = sup [Nec(g| p)®Nec( p)]
Poss(g) = m;p [Poss(g| p)®Poss( p)]

TueOREM 3 (GENERALIZED MobDus PoNEns FOr NecessiTY Funcrions) Let
# be a partition of ¥ and let g be a proposition. If Nec{p) and
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Nec(q | p) are real values defined for every proposition p in the parti-
tion & such that

Nec(p) <I(p|¢)
Nec(g| p) = inf [1(q| w)QI(p|w)]

then the following inequalily is valid:
sup [Nec(q| p)®Nec(p)] <1(q|¢)

Proof Note first that since ¢ is nonincreasing in its second argument and
since

I(ple)y=<I(p|w)
for every evidential world w,

Neo(g| p) = inf [1(q| W)QL(p|W)] = inf [1(a] W)@N(p]¢)]

It follows then from the monotonicity and continuity of ® with respect to its
arguments that

Nec( p)ONec(q| p) = 1(p| €)@ inf [I(g| w)@I(p|¢)]
inf {I(p| ¢)®[1(g|W)O1(p|4)]}
=< jﬂfgl(ﬂw)

=1I(g|¢)

I p|e)o[I(glw)OI(pi€)] =X(g|w)

because of the definition of ¢ and the continuity of ®.
Since the above inequality is valid for any proposition p in &, Theorem 3
follows. |

A dual result also holds for possibility functions.

TueoreM 4 (GENErALIZED Mobus PoneNs For Possmrmy Funcrions  Let
# be a partition of ¥ and let g be a proposition. If Poss(p) and

Poss(q | p) are real values, defined for every proposition p in &, such
that

Poss( p) = C(p|¢)
Poss(q| p) = :gp{[l(ql w)QI(p|w)]
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then the following inequality is valid:

st;p [Poss{g| p)®Poss( p)] = C(q|¢)

Proof Note first that if w is an evidential world, then
c(ple)=Ip|w)

It follows then from the nonincreasing nature of ) with respect to its second
argument that

Poss(g| p) = S‘Lp,[I(q | w)QI{ p| w)]

= sup [I{(g| w)@C(p|¢)]
W&
and therefore that

Poss{q| p)®Poss( p) = sup [I{g]| w)DC(p|£)]OC(p]¢)
we ¢
Taking now, in the above expression, the supremum with respect to all
propositions p in 2, it is
sup [Poss(g | p)®Poss( p)] =
F]

m;p{ stl_p&[l(q| w)@C(plé')]@C(P|‘3')} (1)

Note, however, that since # is a partition, there always exists a proposition
P in # such that C{5| &) = 1 (i.e., 5 “*intersects’ &), and therefore

St;p{jlu_p‘[l(ﬂ W)@C(Plé')]@)C(plé')}

> sup [I(q| w)@c(ﬁlg)]@)C(ﬁlé’)

wk ¢

= supI{q|w)

wk¢
=C(q|¢) (2)
Theorem 4 follows at once by combination of the inequalities (1) and (2}. W
Finally, notice also that, although Theorems 3 and 4 have been characterized
as duals, it is not necessary that # be a partition for the generalized modus

ponens for necessities to hold, although the proof of its possibilistic counterpart
relies on such an assumption. It should be clear, however, that richer proposi-
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tional collections & would lead to better lower bounds for values of the degree
of implication K(gq | £).

Yariables

The @-transitivity property of I is the essential fact expressing the relation-
ships between the degrees of implication of the propositions that were proved
in the previous section. The statements of these relations in most works
devoted to fuzzy logic are made, however, using special subsets of the universe
of discourse that are described through the important notion of variable.
Introduction of this concept, which is also central to other approximate
reasoning methodologies, permits us to make a clearer distinction between
similarities defined, in some absolute sense, from the several viewpoints and
related proximity measures that compare objects (in our case, possible worlds)
from the marginal viewpoint of one or more variables.

In what follows, we will assume that only certain propositions, specifying
the value of a system variable belonging to a finite set

v={X,Y,Z,...)

will be used to characterize possible worlds.
The propositions of interest are those formed by logical combination of
statements of the type

‘“The value of the variable V is v.”

where V is in the variable set ¥ and v is a specific value in the domain 2(V)
of the variable V.

We will also assume that, in any possible world, the value of any variable is
a member of the corresponding domain of definition of the variable. In the
context of our discussion, we will not need to make special assumptions about
the scalar or numeric nature of the state variables, using the notion in the same
primitive and general sense in which it is customarily used in predicate
calculus.

We will be specially interested in subsets, called variable sets, of the
universe % consisting of worlds where the value of some variable ¥ is equal
to a specified value v. We will denote by [ X = x] (similarly [Y = ], etc.)
the set of all possible worlds where the proposition **The value of the variable
X is x is true. Clearly, the variable-sets in the collection

{[X=x]:xisin 2(X)}

partition the universe into disjoint subsets. These collections have been used to
characterize the concept of rough sets (Pavlak [30]), of importance in many
information system analysis problems, including some that arise in the context
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of approximate reasoning, A similar notion has been used also to describe
algorithms for the combination of probabilities and of belief functions (Shafer
et al. [39]).

To simplify the notation we will write

WX, Wk,

as shorthand for w - [X =x], w [Y = »],..., respectively.

POSSIBILISTIC STRUCTURES AND LAWS The usual statements of the laws of
fuzzy logic are made, as mentioned before, through the use of variables rather
than by means of general propositional expressions. It is customary, for
example, to speak of the possibility of the variable X taking the value x to
describe the value that a possibility fanction for an evidential set & attains for
the proposition [ X = x].

~ In our model, we will therefore say that a function

Poss(+) : 2(X) = [0,1]
is a possibility function for the evidential set ¢ and the variable X whenever
Poss(x) = C([ X = x] | ¢)

for all values x in the domain @(X). Similarly, we will say that Nec(*) is a
necessity function for X whenever

Nee(x) s {[ X =x]| &)

for all values x in #(X).

If possibility distributions are defined in this way as point functions in the
variable domain (X)), then it is possible to use the disjunctive laws of fuzzy
logic proved in the section Properties of Possibility and Necessity Functions to
extend their definition over the power set of 2(X), that is,

Nec(A U B) = max[Nec(A), Nec(B)]
Poss(.A U B) = max[Poss(A4), Poss(B)]

where A and B are subsets of the domain 2( X ). These equations are usually
given as the basic disjunctive laws of possibility distributions.

Note that, using such extensions, both possibility and necessity functions are
nondecreasing functions (with respect to the order induced by set inclusion).
The value of Nec(.A) measures the extent to which the evidence supports the
statement that the variable value necessarily lies in the subset A of its domain
of definition, with a dual interpretation being applicable for possibility distribu-
tions.
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MARGINAL AND JOINT POSSIBILITIES The original similarity relation intro-
duced earlier may be considered to be a measure of proximity between possible
worlds from the joint viewpoint of all system variables. The notion of variable,
however, permits the definition of similarities from the restricted viewpoint of
some variables or subsets of variables.

These restricted perspectives play 2 role with respect to the original similar-
ity § that is analogous to that of marginal probability distributions with respect
to joint probability distributions. To derive useful expressions that describe
stmilarities between two values x and x* of the same variable X, it should be
noted first that the degree of implication I(* | - ) is transitive. This fact permits
the application of a theorem of Valverde [45] to define a function S, by means
of the expression

Sx:9(X)x 2(Xx)~[0,1]: (x, x) = min[I(x| x),I(x"| x)]

Defined in this way as a *‘symmetrization’” of the preorder induced by the
degree of implication I{- | « ), the marginal similarity S, has the properties of
a similarity function. Furthermore, the ‘‘projection’’ operation entailed by the
use of I{x| x*), based on the projection of every x"-world into the set of
x-worlds, may be comsidered to be the basic mechanism to transform the
original similarity function into ope that discerns differences only in the values
of the variable X.

It must be noted, however, that uniess additional assumptions are made
about the nature of the original similarity S, the function S, fails to satisfy the
intuitive requirement

S(w,w} < Sy(w, w)

whenever w - x and ' - X', that is, the similarity between two objects from
a restricted viewpoint is always higher than their similarity from more general
viewpoints that encompass additional criteria of comparison.

Although considerable research remains to be done to identify alternative
definitions of marginal similarities that are not hampered by this problem, a
basic result of Valverde [45] presented Iater in this paper, appears to provide
the essential tool that must be employed to produce the required coarser
measures. Additional reasonable assumptions that might be demanded from S
to facilitate the construction of marginal similarities with desirable characteris-
tics are also an object of current investigation.

CONDITIONAL DISTRIBUTIONS AND GENERALIZED INFERENCE The basic
conditional structures of fuzzy logic are usually defined as elastic constraints
that restrict the values of one variable given those of another. By simple
extension of our previous convention to conditional structures, we will write
Nec(y | x) and Poss(y | x) as shorthand for

Nec([Y=»]|[X=x]) and Poss([Y=y]|[X=x])
respectively.
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Y

Evidance In X

X

Figure 5. Inference as a compatibility relation.

If a classical (i.e., Boolean) inferential rule of the type
If X =x,then Y isin R(x).

is thought of as the definition of a relation R defined over pairs (x, ¥) in the
Cartesian product X X Y, then such a relation may be used to define a
multivalued mapping that maps possible values of X into possible values of ¥
as illustrated in Figure 5.

Such a compatibility relation perspective is an essential element of the
original formulations of both the Dempster—Shafer calculus of evidence (De-
mpster [8]), where distributions in some space (i.e., the domain of some
variable X') are mapped into distributions of another variable (i.e., the domain
of another variable Y') by direct transfer of *‘mass’’ from individual values to
their mapped projections, and of the compositional rule of inference (Zadeh
[51D).

Note that whenever Poss(y | x) = 1, if the bound is actually attained, that
is, if

sup [I(y| w)@QI(x|w)] =1
wH &

then it is possible for an evidential world w in [ X = x] [i.e., I{(x|w) = 1] to
be such that w ~ y. Pairs (x, y) such that Poss( ¥ | x} = 1 may be considered
to approximate the core’ of a generalized inferential relation that allows us to
determine bounds for the similarity between evidential worlds and those in the
variable set [Y = y] on the basis of knowledge of similar bounds applicable to
the variable set [ X = x]. This relation, which is the fuzzy extension of the
classical compatibility mapping R illustrated in Figure 5, may be thought of as
a descriptor of the behavior, for x-worlds, of the values of the variable Y

The core of a fuzzy set x: %= {0, 1] is the st of all points w such that p{w) = 1, that is, the
points that *‘fully’* belong to p.
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“‘near’” R. The compatibility relation is itself approximated by (or embedded
in) the core of the conditional possibility distribution, that is, worlds w such
that w - x and w i~ y, and such that Poss(y | x) = 1.

Since the collection of the sets [ X = x] partitions the universe % into
disjoint sets, then the generalized modus ponens laws can be readily stated in
terms of variable values as

Nec(y) = sup [Nec( v | x) ®Nec( x)]
Poss(y) = sgp [Poss( ¥ | x)@Poss{x)]

which clearly shows the basic nature of inferential mapping as the composition
of relational combination (i.e., ®-““intersection’’) and projection (i.e., maxi-
mization).

FUZZY IMPLICATION RULES We will now examine proposed interpretations
for conditional rules, usually stated in the form

If Xis A,then Y is B.

within the context of possibilistic logic. Whereas in two-valued logic any such
rule simply states that whenever a condition A is true, another condition B
also holds, varicus interpretations have been proposed for rules expressing
other notions of conditional truth.

In the case of probabilities, for example, degrees of conditionality have been
modeled either by means of conditional probability values Prob( A | B), which
measure the likelihood of B given the assumed truth of A, or by the
alternative interpretation Prob(- A v B), used by Nilsson [29] in his probabilis-
tic logic, which essentially quantifies the probability that a rule is a valid
component of a knowledge base. Either one of these interpretations is valid in
particular contexts being, respectively, the probabilistic extensions of the
so-called de re, that is,

p—1lg
and de dicto, that is,
I(p—4q)
interpretations of conditionals in modal logic.

In fuzzy logic, two major interpretations have been advanced to translate
conditional rules,'® with A4 and B corresponding to the fuzzy sets

na: X [0,1] and pg: Y= [0,1]

1% rather encompassing account of potential fuzzy reasoning mechanisms may be found in a paper
by Mizumoto et al. {27].
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The first interpretation was originally proposed by Zadeh [52], as a formal
translation of the staternent

If e, is a possibility for X, then uj is a possibility distribution for Y.

This conditional statement, which may be regarded as a constraint on the
values of one variable given those of another, states the existence of a
conditional possibility function Poss(- | + ) such that

up(r) = sup [Poss(y} x)®u,(x)] = Poss(y| x)®p,(x)

Recalling now the definition and properties of the pseudoinverse, we may
restate this particular interpretation as

Poss(y | x) = us(7)Dra(*) = Hy| w)DH x| w)

for every world w - &,

In Zadeh’s original formulation, made within the context of a calculus based
on the minimum function as the T-norm, conditionals were, however, formally
translated by means of the pseudoinverse of the Lukasiewicz T-norm. Certain
formal problems associated with such a combination were pointed out by
Trillas and Valverde {42], who developed translations consistent with the
T-norm used as the basis for the possibilistic calculus.

Using the characterization of conditionals introduced earlier, this relation
may also be thought of as a measure of the degree to which a possibility for ¥
exceeds a fraction (measured by the conditional possibility distribution) of a
given possibility distribution for X. In particular, whenever Poss{y| x} = 1,
then pg(y) = p,(x), indicating the possible existence, since Poss(y| x) is
only an upper bound of Iy | WY@K x| w), of an evidential world such that
whkxand wh y, with xin 4 and y in B.

As illustrated in Figure 6, where it has been assumed that the underlying
metric (i.e., dissimilarity} is proportional to the Euclidean distance in the
plane, the core of the corresponding conditional possibility distribution is an
{upper) approximant of a classical compatibility relation (indicated by the
shaded area in the figure) that fans outward from the Cartesian product of the
cores of A and B. If this interpretation is taken whenever several such rules
are available, then each one of these rules will lead to a separate possibility
distribution. Combination of these upper bounds by minimization results in a
sharper possibility estimate that represents the *‘integrated’ effect of the rule
set.

The second interpretation of conditional relations, leading to a wide variety
of practical applications {Sugeno [41]), was utilized by Mamdani and Assilian
[26] to develop fuzzy controllers. The basic idea underlying this explanation
follows an approach originally outlined by Zadeh [47, 48, 49, 50, 51]. In this
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core{A}
X

Figure 6. Rules as possibilistic approximants of & compatibility relation.

case, a number of conditional statements of the form
If Xis A;,then Y is B, k=1,2,...,n

are given as a combined ‘‘disjunctive’’ description of the relation between X
and ¥, rather than as a set of independently valid rules. The purpose of this
rule set is the approximation of the compatibility relation by a *‘fuzzy curve”
generated by disjunction of all the rules in the set, as shown in Figure 7.

X

Figure 7, Rule sets as disjunct approximants of a compatibility relation.
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. |
Figure 8. A possibilistic conditional rule (ZTV).

Recalling the characterization of conditioning as an extension of a classical
compatibility relation, we may say that the core of the compatibility relation is
approximated by above by the union

kgl [core(u,,t) x coré(,ugk)]

of the Cartesian products of the cores of the fuzzy sets for 4, and B,. In this
case the multiple rules are meant to approximate some region of possible
(X, Y) values, and the results of application of individual component rules
must be combined using maximization to produce a conditional possibility
function. We may say, therefore, that under the Zadeh-Mamdani-Assilian
(ZMA) interpretation, the function

Poss(y| x) = Sljl:p {min[ p4(x), na(»)]}

is a conditional possibility for Y given X,

It is important to note that the two interpretations of fuzzy rules that we have
just examined are based on different approaches to the approximation (by
above) of the value

sup [1(y | w)@I1(x| w)]

being, in the case of the Zadeh-Trillas- Valverde (ZTV) method, the resuit of
the conjunction of multiple fuzzy relations such as that illustrated in Figure 8,
while in the case of the ZMA logic the construction requires disjunction of
relations such as that illustrated in Figure 9.

The difference between the two approaches when combining several rules is
illustrated also in Figures 10 and 11, showing the contour plots for the a-cuts
of the fuzzy relations that are obtained in a simple example involving four
rules. In these figures, the rectangles with a dark outline correspond to the
Cartesian products of the cores of the antecedents A, and B,. Darker shades
of gray correspond to higher degrees of membership.
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Figure 9, A component of a disjunctive rule set (ZMA).

The reader should be cautioned, however, about the potential for invalid
comparisons that may result from hasty examination of these figures. Each
formalism should be regarded as a procedure for the approximation of a
compatibility relation that is based on a different approach for the description
of relationships between variables. In the case of the ZMA interpretation, the
intent is to generalize the interpolation procedures that are normally employed
in functicnal approximation. As such, this approach may be said to be inspired
by the methodology of classical system analysis, The ZTV approach, by
contrast, is a generalization of classical logical formulations and may be
regarded, from a relational viewpoint, as a procedure to describe a function as
the locus of points that satisfies a set of constraints rather than as a subset of
““fuzzy points’’ of a Cartesian product.

Figures 10 and 11, while showing that the same rule sets would lead to
radically different results, should not be considered, therefore, to discredit
interpolative approaches, as such techniques, proceeding from a different

X
Figure 10. Contour plots for a rule set (ZTV).
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-

X

Figure 11. Contour plots for a rule set (ZMA).

perspective, should normally be based on rule sets that are different from those
used when rules are thought of as independent constraints.

THE NATURE OF SIMILARITY RELATIONS

In this closing section, we will examine issues that arise paturally from our
previous examination of the role of similarities as the semantic basis for
possibility theory.

Our discussion focuses on two topics. We look first at the requirements that
our theory imposes upon the nature of the scales used to measure proximity or
resemblance between possible worlds. Finally, our examipation of the inter-
play between similarities and possibilities turns to issues related to the genera-
tion of similarity relations from such sources as domain knowledge that
describe significant relations between system variables.

On Similarity Scales

Our previous interpretation of possibilistic concepts and structures was based
on the use of measures of proximity that quantify interobject resemblance using
real numbers between 0 and 1. Our assumptions about the use of the [0, 1]
interval as a similarity scale have been made primarily, however, as a matter
of convenience to simplify the description of our model while being consistent
with the customary definitions of possibility and necessity distributions as
functions taking values in that interval,

Close examination of the actual requirements imposed upon our sirnilarity
scales reveals, however, that our measurement domain may be qulte general so
_ as to include symbolic structures such as

{identical, very similar, . . ., completely dissimilar}
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Cur model is based on the use of a partially ordered set having a maximal and
a minimal element representing identity and complete dissimilarity, respec-
tively, Furthermore, we have assumed the existence of 2 binary operation (the
triangular norm ®) mapping pairs of possible worlds into real numbers, with
cerain desirable order-preserving and transitive properties. The concept of
triangular norm, however, does not rely substantially on the use of real
numbers as its range and may be readily extended to more general partially
ordered sets with maximal and minimal elements.

We have also assumed a continuity property for the triangular norm opera-
tion. This property, however, simply requires that a notion of proximity also
exist among similarity values so as to provide a form of (order-consistent)
topology in that space. While, in general, more precise scales will result in

more detailed representations of interworld similarity, it is important to stress -
that the similarity-based model presented here does not rely on *‘density’’

assumptions such as the existence of an intermediate value ¢ between any
different values g and b in the similarity-measurement scale.

From a practical viewpoint, the major requirement is to quantify proximity
in such a way as to be able to determine that two quantities are similar to some
degree (i.e., approximate matching). The degree of precision that such a
matching entails is problem-dépendent and will typically be the result of
conflicting impositions between the desire, on the one hand, to keep granularity
relatively low to reduce complexity, and the need, on the other, to describe
system behavior at an acceptable level of accuracy. The work of Bonissone and
Decker [4] is a significant example of the type of systematic study that must be
carried out to define similarity scales that are both useful and tractable.

The Origin of Similarity Functions

The model of fuzzy logic presented in this paper is centered on the metric
notion of similarity as a primitive concept that is useful in explaining the nature
of possibilistic constructs and the meaning of possibilistic reasoning. In this
formulation, similarities are defined as real functions defined over pairs of
possible worlds.

From this perspective, similarities describe relations of resemblance between
objects of high complexity, which, typically, resuit from consideration of a
lTarge number of system variables. Reliance on such complex structures has
been the direct consequence of a research program that stressed conceptual
clarification as its primary objective. In practice, however, it will be generally
difficult to define complex measures that quantify similarity between complex
objects on the basis of a large number of criteria.

Similarities provide the framework that is required to understand approxi-
mate relations of corelevance, usually stated as generalized conditional rules.
The practical generation of similarity functions typically proceeds, however, in
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the opposite direction, from separate statements about limited aspects of system
behavior to general metric structures. Once such resemblance measures are
defined, they may be used to express and acquire new laws of system behavior
determined, for example, from historical experience with similar systems.
Furthermore, such similarity notions may be used as the basis for analogical
reasoning systems that try to determine the system’s state on the basis of
similarity to known cases (Kolodner [23]).

Perhaps the simplest mechanism that may be devised to generate complex
metrics from simpler ones is that which starts with measures of resemblance
that quantify proximity from a limited viewpoint. These metrics are usually
derived, using a variety of techniques, in unsupervised pattern classification (or
clustering) problems (Hartigan [20]). In many important applications, hierar-~
chical taxonomies—a feature of many representation approaches in artificial
intelligence—may be used, often in connection with a variety of weighing
schemes, quantifying branching importance, to generate metrics that often
satisfy the more stringent requirements of an ultrametric (Jardine and Sibson
[22]).

Classification hierarchies such as those may be though of as sets of geperal
rules, having a particularly useful structure, that specify interest proximity
from relevant, but restricted, viewpoints, eventually providing measures of
similarity between variable values (i.e., the ‘““leaves’ of the taxonomic tree).
More generally, however, we may expect that sets of possibilistic rules (i.e., a
general knowledge base) defining a general semantic network of corelevance
relations may be available as the source for the determination of interobject
proximity. These possibilistic semantic networks resemble conventional seman-
tic networks ir most regards, being more general in that, in addition to
specifying knowledge about system behavior in some subsets of state-space,!!
they also specify characteristics of behavior in neighborhoods of those subsets.

We may think, therefore, that the antecedents of implicational rules define
general regions in state-space where existence of relevant kmowledge may
increase insight through application of inferential rules. Using Zadeh’s termi-
nology, these antecedents define ‘‘granules’’ that identify important regions of
state-space and indicate the level of accuracy (or granularity) that is required
to perform effective system analysis. In this case, the possibilistic granules
correspond to fuzzy sets that are used to specify both what is true in the core of
the granule and, with decreasing specificity, what is true in a nested set (i.e.,
the a-cuts) of its neighborhoods. The ability to specify behavior using such a
topological structure results in inferential gains that are the direct consequence
of our ability to reason by similarity—an ability that is made possible by the
approximate matching property of the generalized modus ponens. From an-

'The expression “*state-space’” is loosely used here to indicate the space defined by all system
variables,
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other perspective yet, the fuzzy granules identified by possibilistic rules may
also be thought of as generalizations of the arbitrary variable sets used in a
variety of artificial intelligence efforts aimed at understanding system behavior
using qualitative descriptions of reality (Forbus [16]).

A number of heuristics may be easily formulated to integrate **marginal”’
measures of resemblance into joint similarity relations. More generzlly, how-
ever, we may state the problem of similarity construction as that of defining
metric structures on the basis of knowledge of the aspects of system behavior
that are important to its understanding—the previously mentioned granules,
which define what must be distinguished. Since generally those granules are
fuzzy sets, the relevance to similarity construction of the following representa-
tion theorem, due to Valverde, may be immediately seen.

TeEOREM 5 (VALVERDEY) A binary function S mapping pairs of objects
of a universe of discourse ¥ into [0, 1} is a similarity relation if and
only if there exists a family # of fuzzy subsets of ¥ such that

S(w, w) = inf {min] A(w) @ B(w), h(w) @h(w)]}

SJor all w and w' in ¥, where the infimum is taken over all fuzzy .éubsets
h in the family #.

Besides its obvious relevance to the generation of similarity relations from
kmowledge of important sets in the domain of discourse, Valverde's
theorern—resulting originally from studies in pattern recognition—is also of
potential significance to the solution of knowledge acquisition problems be-
cause of the important relations that exist between learning procedures and
structure-discovery techniques such as cluster anatysis.

CONCLUSION

This paper has presented a similarity-based model that provides a clear
interpretation of the major structures and methods of possibilistic logic using
metric concepts that are formally different from the set-measure constructs of
probability theory. Regardless of the potential existence, so far unestablished,
of probability-based interpretations for possibilistic structures, this metric
model makes clear that there are no compelling reasons to confuse two rather
different aspects of uncertainty into a single notion simply because one’s
favorite theoretical framework, in spite of its otherwise many remarkable
virtues, fails to fully capture reality.

Succinctly stated, being in a situation that resembles a state of affairs S does
not make S likely or vice versa. Furthermore, our reference statc may not
even be possible in the current circurmnstances, which would make it completely
unlikely, but we may still find it useful as a comparison landmark. This use of
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