
A COMPARISON OF APPROACHES FOR MODELING PROSODIC FEATURES
IN SPEAKER RECOGNITION

Luciana Ferrer∗ Nicolas Scheffer Elizabeth Shriberg

Speech Technology and Research Laboratory, SRI International, Menlo Park, CA, USA

ABSTRACT

Prosodic information has been successfully used for speaker recog-
nition for more than a decade. The best-performing prosodic system
to date has been one based on features extracted over syllables ob-
tained automatically from speech recognition output. The features
are then transformed using a Fisher kernel, and speaker models are
trained using support vector machines (SVMs). Recently, a sim-
pler version of these features, based on pseudo-syllables was shown
to perform well when modeled using joint factor analysis (JFA). In
this work, we study the two modeling techniques for the simpler
set of features. We show that, for these features, a combination of
JFA systems for different sequence lengths greatly outperforms both
original modeling methods. Furthermore, we show that the com-
bination of both methods gives significant improvements over the
best single system. Overall, a performance improvement of 30% in
the detection cost function (DCF) with respect to the two previously
published methods is achieved using very simple strategies.

Index Terms— Speaker recognition, Prosody, Joint Factor
Analysis, Support Vector Machines

1. INTRODUCTION

We consider the task of text-independent speaker verification: given
a sample from a speaker and a claimed identity we need to decide
whether the claim is true or false. A successful approach to speaker
verification is to combine different knowledge sources by modeling
them separately, fusing them at the score level to produce the final
score that is later thresholded to obtain a decision. Combinations of
systems are most successful when the individual systems being com-
bined are significantly different from each other. Currently, the best
individual speaker recognition systems are based on low-level spec-
tral features modeled using joint factor analysis (JFA) techniques.
Prosody, the intonation, rhythm and stress patterns in speech, is not
directly reflected in the spectral features and, hence, a system based
on prosodic information should be highly independent from a low-
level spectral system. Indeed, it has been shown [1, 2, 3, 4] that
systems based on prosodic information can lead to significant im-
provements when combined with a state-of-the-art low-level system.

Several speaker recognition systems have been proposed in the
last decade [5, 6, 7, 3]. All these systems define regions of extrac-
tion based on some event in the waveform that can be determined
automatically and then extract certain measurements based on the
pitch and energy signals and, sometimes, the durations of subre-
gions within them. Several methods have been used to model these
features. In this paper we will focus on comparing two general mod-
eling methods: one that models Gaussian mixture weights using sup-
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port vector machines (SVMs) [8] and the currently standard method
for modeling spectral features: JFA [9, 3]. We perform the study
on a small subset of well-behaved prosodic features used in [3] that
can be modeled using current JFA techniques. Furthermore, we pro-
pose three extensions to the JFA system presented in that paper: (1)
the use of several degrees for the Legendre polynomial approxima-
tion used to compute the features, (2) the modeling of sequences of
consecutive feature vectors to capture their dynamic behavior, and
(3) the combination of the JFA system with the GMM-SVM system.
Overall, we show gains in DCF of up to 30% with respect to the
methods previously presented in the literature.

2. PROSODIC FEATURES

In [7] we presented a paradigm for the extraction of prosodic features
from speech. Syllables are estimated automatically using the output
of an automatic speech recognition (ASR) system, and more than
a hundred measurements based on pitch and energy signals, along
with the duration of the syllable and its constituents (onset, nucleus,
and coda) are extracted over each syllable. We called these features
syllable-based NERFs (non-uniform extraction region features), or
SNERFs. The extracted features have some particular characteris-
tics that make them harder to model than the standard spectral fea-
tures: they have mixed continuous/discrete distributions, they are
much sparser than low-level features, and they have undefined val-
ues. A system based on these features has been the best performing
prosodic system on NIST speaker recognition evaluation (SRE) data
published in the speaker recognition literature, since its introduction
in 2005.

Despite its success, these syllable-based features have not been
widely used in the community, probably because they are not simple
to extract. They require ASR output and, even though they are all
basically simple measurements over the pitch, energy and duration
patterns, their implementation is laborious. In [3], Dehak proposed
the use of ASR-independent regions based on the valleys found in
the energy signal and the use of polynomial approximations of the
pitch and energy signals, along with the length of the regions, as fea-
tures. Furthermore, they proposed the use of JFA for their modeling.

In this paper our focus is on comparing modeling methods for
the simpler set of features, which we will callenergy valley-based
polynomial approximation(EV-PA). A detailed description of the
extraction procedure for these features can be found in [10]. Essen-
tially, the speech signal is segmented into regions by splitting the
voiced regions wherever the energy signal reaches a local minimum.
The minimum is obtained in our case by finding the positive cross-
ings through zero of the derivative signal, estimated using a smooth
delta function given byδ(i) = 0.10(x(i + 1) − x(i− 1) + 2x(i +
2)−2x(i−2)), wherex(i) is the energy at framei. The energy and
pitch signals are obtained using the getf0 function from the Snack
toolkit [11]. For each region, these signals are approximated with a
Legendre polynomial of order N (set as 5 in the original work from



Dehak et al.). The length of the region is also used as a feature. A
total of2N + 1 features is then extracted for each EV region.

It is important to note that the EV-PA features are not just sim-
pler than our original set of syllable-based features in that they do
not require ASR and they are easier to extract. They are also simpler
to model since they are all continuous and do not contain undefined
values. This makes the JFA modeling of these features possible and
is why we have chosen them to perform the current study instead
of using the original set of features. The generalization of the JFA
method to the more general set of prosodic features is one of our
current priorities and one that, all current evidence indicates, should
result in significant improvements.

3. SVM MODELING OF GMM WEIGHTS

As mentioned in the previous section, the SNERFs cannot be simply
modeled using Gaussian mixture models (GMMs) since the features
contain undefined values. The first attempt at modeling these fea-
tures was to adapt the GMM-UBM (Gaussian mixture model - uni-
versal background model) modeling method [12] by adding a prob-
ability of undefined value to each Gaussian in the mixture [13]. An-
other approach is to do SVM modeling of some parameterization of
the distribution of these features [8]. This is the approach we use
for this paper, since it was shown to give good results on the latest
set of SNERFs. The general method is to train a UBM on held-out
data, given by a GMM with the additional probabilities of undefined
value, as in the original GMM-UBM method. The GMM weights
are then adapted to each sample, and the vector of adapted weights
is used as a feature vector that is then modeled using SVMs.

Since the dimensionality of the feature vector is large and the
features are sparse, a back-off strategy is used: several UBMs are
trained for different subsets of features instead of a single UBM
for the complete set. In this work we train UBMs for each indi-
vidual feature, and for groups of all same-order polynomial coeffi-
cients. Furthermore, we have found that sequences of prosodic fea-
tures contain valuable information about the speaker identity. Hence,
we create UBMs for features from sequences of two and three con-
secutive regions. Since the presence of pauses strongly affects the
distribution of the prosodic features around them, pauses are consid-
ered as part of the sequence. Hence, feature vectors for sequences
are obtained by concatenating the features or the pause length de-
pending on whether a region is an actual syllable or pseudo-syllable
or a pause. So, for example, three kinds of sequences of length 2 are
defined: 11, 0 1 and 10, where a 1 indicates a syllable or pseudo-
syllable and a 0 indicates a pause. For each of these sequences a
separate UBM is trained.

The UBMs for each feature or group of features and each se-
quence are adapted to the samples independently and the obtained
weights are concatenated to obtain the final transform. This trans-
form can be shown to be a particular case of the Fisher kernel [14].
The transform is further normalized using rank normalization (de-
scribed in [15]) before training the SVMs for each target speaker.
For more details on this system, see [8]. No intersession variabil-
ity compensation (ISVC) method is implemented for this system.
Nuisance attribute projection, the most common ISVC method when
training SVM models, does not lead to significant improvements on
these features.

4. JFA MODELING OF GMM MEANS

In [3], Dehak et al.proposed to use JFA techniques to model the EV-
PA features described in Section 2. This is possible because these

features are not high-dimensional (in their paper, a total of 13 fea-
tures are used) and do not contain undefined values. Using JFA to
model prosodic features is a very appealing possibility, since JFA has
been shown to provide outstanding performance on spectral features,
and a vast amount of work has been done in the area.

JFA, as applied to speaker recognition [9], is based on the as-
sumption that a supervectorM given by the concatenated GMM
means can be decomposed asM = m+Ux+V y+Dz, wherem is
the background model supervector,U andV are low-rank matrices,
D is a diagonal matrix, andx, y andz are latent variables with stan-
dard normal distribution. The components of vectorx are called the
channel factorsand those ofy are called thespeaker factors. To esti-
mate the matrixU , a database with several samples for each speaker
is needed, while to estimateV a database with many different speak-
ers is required. When the matrixD is set to 0, the model reduces to
probabilistic principal component analysis (PPCA). In this paper,D
is set to zero for all JFA experiments. After the parameters of the
factor analysis model are computed for the train and test samples in
a trial, the average log-likelihood ratio between the speaker models
and the universal model are computed. Both approximate and ex-
act ways of computing the log-likelihood have been used. In this
paper we use an approximate method in which scores are computed
as the scalar product between the speaker model mean offset and the
channel-compensated first-order Baum-Welch (BW) statistics for the
test sample centered around the UBM. This method is extremely fast
and has been shown to perform very well compared to other methods
[16]. The standard UBM-GMM approach corresponds toU andV
set to zero andD set to correspond to maximum a posteriori (MAP)
adaptation. We will call this the MAP approach.

In the case of JFA, since the model is robust to sparse data thanks
to the use of speaker factors, all features for a certain polynomial de-
gree can be modeled jointly without the need for a back-off strategy.
Nevertheless, extending the work of Dehak et al., we will present
results where several JFA models are trained, one for each sequence
as defined in the previous section. We will show that, as in the case
of the SVM modeling, sequences of length 2 and 3 give significant
improvements in performance.1 Furthermore, we will also explore
the joint use of several polynomial degrees, which is, in fact, a kind
of back-off strategy.

5. EXPERIMENTS

Experiments were conducted using data from the NIST SRE from
2006 and 2008, which we will call SRE06 and SRE08, respectively.
SRE06 data is used for parameter tuning and combiner training,
leaving SRE08 data as a clean test set. Each speaker verification
trial consists of a test sample and a speaker model. The test samples
are one side of a telephone conversation with approximately 2.5 min-
utes of speech. We consider the 1-side training conditions in which
we are given one conversation side to train the speaker model. We
present results on English-only and all-language subsets (subsets 6
and 7 for SRE08, as defined by NIST [17, Section 4.5]). We use ZT-
NORM to normalize all scores. The data used as negative examples
for the SVM training, for background model training, for ZTNORM
and for training of the JFA matrices is taken from 2004 SRE data
and 2005 alternate microphone SRE data. All experiments are run
in a gender-dependent manner. The method used for all combina-
tion experiments is linear logistic regression where parameters are
trained on SRE06 data. Results are shown in terms of equal error

1Marcel Kockmann from Brno University was the first to try the experi-
ments with different sequence lengths, although no publication is yet avail-
able with his results.



rate (EER) and both the minimum and actual detection cost function
(DCF), defined by NIST [17].

The size of the UBMs used for the SVM method is determined
based on the number of samples available for the specific feature
sequence being modeled and the dimensionality of the feature vec-
tor and goes from 24 (for single-feature models for the sequence
1 0 1) to 800 (for the joint model of all degree-5 polynomial ap-
proximation features). In the case of JFA, the number of Gaussian
components used for each UBM is tuned to optimize performance
on the SRE06 task matching the condition in which SRE08 results
are reported (that is, for SRE08 English-only results, SRE06 data
for English-only is used to optimize the number of Gaussians). Fur-
thermore, optimization is performed separately for MAP and JFA
experiments. Number of Gaussian components from 32 to 512 were
explored. We find that the optimal number of Gaussians is smaller
for longer sequences. Sequences of length 1 have optimal values of
256 or 512, and sequences of length 2 and 3 have optimal values be-
tween 32 and 128. The dimensions ofV andU are fixed at 50 and
the relevance factor for MAP at 20, since these values were found to
give the best or close to best results for all models.

Figure 1 shows the minimum DCF results for four different mod-
eling methods: MAP, JFA, SVM, and the score-level combination of
SVM and JFA on SRE08 English-only data. Results are shown for
each sequence length separately and for the accumulation of differ-
ent sequence lengths. In the case of JFA, the systems containing
sequences of length larger than 1 are obtained by score-level com-
bination of the JFA systems for each particular sequence of pause
and non-pauses of that length. Hence, for example, the system for
sequence length equal to two is formed by the combination of three
systems corresponding to patterns 00, 1 0, and 01. On the other
hand, the SVM systems are always a single system trained with the
concatenation of the features corresponding to all the patterns for the
different sequence lengths involved. Furthermore, the figure presents
results using a single polynomial order equal to 5, or three polyno-
mial orders: 1, 3 and 5. As for the case of the sequence lengths, the
JFA systems for different polynomial orders are obtained by score-
level combination of the systems for each of the individual orders,
while for the SVM system, a concatenated vector composed by the
features from all orders is used to train a single SVM. In all cases,
the combiner is trained on SRE06 English-only data.

We can see that the MAP results are significantly worse than
the SVM results, and that JFA is significantly better than both of
them for all conditions. Furthermore, the combination of the JFA and
SVM systems leads to further improvements. In all cases we see that
adding sequences of higher lengths leads to significant performance
improvements. Sequences of length 3 alone are worse than those
of length 2. This is likely to be due to the increased dimensionality
of the feature vectors, which makes it harder to robustly estimate
the UBMs. Interestingly, the addition of lower polynomial orders
also leads to improvements, indicating that even JFA techniques can
benefit from back-off strategies.

The results highlighted with stars correspond to the two results
previously presented in the literature. The red star roughly corre-
sponds to the results presented in [3], while the green star roughly
corresponds to the results presented in [8]. We can see that, once
we extend the JFA method by including some of the characteristics
of the original SVM system, the DCF improves from 0.66 to 0.50,
a 25% relative improvement. Furthermore, the combination of both
methods outperforms the best of the two previous baselines (green
star) by 30%.

There might be circumstances in which JFA cannot be used due
to lack of appropriate data with which to train the matrices for the
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Fig. 1. Results for four different modeling methods: MAP, JFA,
SVM, and JFA combined with SVM on SRE08 English-only data.
Two sets of results are shown, using only polynomial order 5 and
using 1, 3 and 5. For each of them, results are shown for each se-
quence length separately, and for the accumulation of different se-
quence lengths. The two stars correspond to the two results previ-
ously published in the literature.

model. Our results indicate that the SVM method might be prefer-
able over the MAP method for such a situation, since the SVM
method seems to be inherently more robust to session variability than
the UBM-GMM method when using MAP to estimate the speaker’s
model. Further experiments should be run to confirm this conclu-
sion, though, including exact scoring methods, careful tuning of the
relevance factor to the particular task, etc.

Table 1 shows a summary of results, for several prosodic systems
and their combination with a baseline system. The baseline system
used here is a JFA system based on 20 MFCC features plus deltas and
double deltas. The data used to train the UBM and the ZTNORM
lists for this system come from 2004 and 2005 alternate microphone
SRE data. For JFA, that data plus Switchboard 2 data Phase 2, 3
and 4, and the development interview data released for SRE08 are
used. Results for our best prosodic system to date, which we call
the full prosodic system, are also shown in the table. This system
uses all SNERF features, grammatically constrained SNERFs, and
the EV-PA features modeled together in a single SVM system. The
system uses the English subset of the data used for UBM training
and ZTNORM for the other prosodic systems in this paper. This
system is described in detail in [2]. Since this system requires the
output of an ASR system, only English results are available for it.

The table shows that even after the large gains in the prosodic
system presented in this paper, the full prosodic system which uses
an order of magnitude more features and includes features with un-
defined values that cannot be handled under the current JFA frame-
work, is still significantly better. Overall, improvements of around
10% on both EER and DCF can be achieved on the English condi-
tions when combining the baseline system with a prosodic system.
Furthermore, we see that gains in the performance of the prosodic
system correspond to gains (though, as usual, much more mod-
est) in the combination performance. Notably, while the original
SVM prosodic system gives no improvement in combination with
the baseline for the all-language conditions, a gain is observed when
the improved prosodic system is used. We believe larger gains can
be achieved if more data (comparable to that used for the baseline
system) is used for UBM and JFA training, and for the ZTNORM
lists for the prosodic systems.



SRE06 SRE08
Eng (23687) All lang (51068) Eng (17761) All lang (35896)

System mDCF EER mDCF EER aDCF mDCF EER aDCF mDCF EER

SVM O:1,3,5 N:1,2,3 0.603 14.518 0.670 17.533 0.632 0.619 15.961 0.854 0.812 19.753
JFA O:5 N:1 0.649 12.188 0.687 14.242 0.669 0.660 14.577 0.812 0.773 16.990
JFA O:1,3,5 N:1,2,3 0.468 9.372 0.541 11.753 0.528 0.504 11.645 0.673 0.644 14.339
JFA + SVM O:1,3,5 N:1,2,3 0.425 8.451 0.508 11.394 0.467 0.453 10.831 0.687 0.634 13.667
Full prosodic system 0.336 7.313 - - 0.417 0.407 9.528 - - -

Baseline 0.081 1.679 0.142 2.987 0.116 0.117 2.687 0.331 0.331 5.788
Base + SVM O:1,3,5 N:1,2,3 0.076 1.734 0.143 2.959 0.116 0.113 2.687 0.378 0.331 5.825
Base + JFA O:5 N:1 0.077 1.679 0.139 2.849 0.115 0.114 2.443 0.358 0.323 5.601
Base + JFA O:1,3,5 N:1,2,3 0.076 1.679 0.137 2.821 0.115 0.111 2.443 0.355 0.319 5.489
Base + JFA + SVM O:1,3,5 N:1,2,3 0.075 1.734 0.136 2.765 0.115 0.110 2.443 0.351 0.311 5.452
Base + Full prosodic system 0.069 1.517 - - 0.100 0.097 2.362 - - -

Table 1. Results on SRE08 for different prosodic systems alone and in combination with a baseline spectral system. The order of the EV-PA
features (O) and the sequence lengths (N) used are indicated for each system. Minimum DCF (mDCF) and equal error rate (EER) are shown
for SRE06 data. Actual DCF (aDCF) with threshold estimated on SRE06 data is also shown for SRE08 data. The number in parenthesis
beside the language condition indicates the number of trials.

6. CONCLUSIONS

We presented a study of two different modeling methods, JFA mod-
eling of GMM means and SVM modeling of GMM weights, for a
subset of simple prosodic features obtained by polynomial approxi-
mations of the pitch and energy signals over pseudo-syllables. Our
results indicate that, for these features, the JFA method greatly out-
performs the SVM method, and that the combination of both meth-
ods leads to significant gains over JFA alone. Our results extend the
previous use of JFA for these features, including the modeling of
different sequence lengths and different polynomial order approxi-
mations. We demonstrate a gain of 25% on the JFA method after
these additions.

Even though the JFA method clearly outperforms the SVM
method for the simple features used here, it is not clear whether this
method can be used for the more general set of prosodic features,
which are still shown to outperform the best result obtained with the
simple set of features. The adaptation of JFA techniques to the larger
feature set is thus an important area for future research.
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