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Abstract

Most commonly used kernels are invariant to permutations
of the feature vector components. This characteristic may make
machine learning methods that use such kernels suboptimal in
cases where the feature vector has an underlying structure. In
this paper we will consider one such case, where the features are
spatially related. We show a way to modify the objective func-
tion of the support vector machine (SVM) optimization problem
to account for this structure. The new optimization problem can
be implemented as a standard SVM using a particular smooth-
ing kernel. Results are shown on a speaker verification task
using prosodic features that are transformed using a particular
implementation of the Fisher score. The proposed method leads
to improvements of as much as 15% in equal error rate (EER).
Index Terms: Support Vector Machines, Kernels, Smoothing,
Speaker Recognition, Speaker Verification.

1. Introduction
Structural Risk Minimization (SRM) has proven to be a power-
ful framework for controlling model complexity while building
powerful discriminative detectors in high dimensions. The most
popular application of SRM, the SVMs, produce superior per-
formance in many problems. SVMs are able to handle large
feature vectors, and result in very flexible architectures due to
the use of kernel functions [1]. The most widely used kernels,
the linear, polynomial, and radial basis functions, are all invari-
ant to permutations of the components of the input vectors. This
is perfectly suitable for many problems in which the particular
ordering of the components of the input vector is not significant.
However, there exist problems in which the feature vectors have
an underlying structure. The knowledge of this structure can
potentially be of help if it is exploited in an effective way.

In this paper, we derive a new kernel targeted for spatially
related features. We consider feature vectors whose compo-
nents are measurements taken over regions of an underlying
spaceF . The kernel is derived by imposing a new regulariza-
tion term in the SVM objective function, related to the smooth-
ness of the SVM weight vector, where smoothness is measured
using neighborhood relationships in the extraction spaceF .
Common examples of spatially structured feature vectors are
those corresponding to histograms as used, for example, in im-
age recognition. Components of a histogram feature vector are
related to each other by the distances between the corresponding
bins. Even though the kernel is derived using the SVM formu-
lation, it can potentially be used in any kernel method.

As a particular case in which this method can be applied,
we consider a classification task where each data sample is a
sequence of varying length. These variable-length sequences

are transformed into fixed-length vectors via a particular im-
plementation of the Fisher score [2] in which each component
of the transformed vector is related to a certain Gaussian in a
Gaussian mixture model (GMM) [3, 4]. This transform can be
understood as asoft histogram where the bins are replaced by
Gaussians and the frequencies of the bins are replaced by poste-
riors. As in the case of histogram features, the resulting vector
has a spatial structure and the smoothing kernel can be applied.

We present results on a speaker verification task using
syllable-level prosodic features as input. Most features used
in speaker recognition are sequential in nature, and a signifi-
cant amount of work has been done in applying and developing
kernels for this task (e.g., [5, 6]). We show that the proposed
smoothing procedure gives as much as 15% EER improvement
on this task, resulting in our currently best performing classifier
for these features.

2. Support Vector Machines
Consider a training set withm samples,S = {(xi, yi) ∈ Rd ×
{−1, +1}; i = 1, ..., m}, wherexi are the features andyi the
class corresponding to samplei. Our goal is to find a function
f(x) = wT x+b, such that sign(f(x)) is the predicted class for
feature vectorx. The standard support vector machine (SVM)
formulation for classification is given by (see, e.g., [1]):

minimize J(w, ǫ) =
1

2
wT w + C

m
X

i=1

ǫi

subject to yi(w
T xi + b) ≥ 1 − ǫi i = 0, ..., m

ǫi ≥ 0 i = 0, ..., m

(1)

Minimizing the norm of the weight vector is equivalent to
maximizing the margin between the samples and the hyper-
plane. Theslackvariablesǫi allow for some samples to be at a
distance smaller than the margin to the separating hyperplane or
even on the wrong side. The parameterC controls the trade-off
between the size of the margin and the total amount of error. By
deriving the dual form of the optimization problem above we
find that input vectors appear only as inner products with each
other. Hence, each inner product between input features can be
replaced with a functionK(xi, xj) = φ(xi)

tφ(xj) called the
kernel function, whereφ(x) is a transform of the input features.

The SVM problem can also be expressed as a maximiza-
tion of l(w, b) = − 1

2
wT w−C

Pm

i=1 h(yi(w
T xi + b)), where

h(z) is thehinge loss, given by(1 − z)u(1 − z) with u(z) the
Heaviside step function. This can be interpreted as maximizing
a log-posterior probability for the parametersw andb given the
data. The first term ofl corresponds to a Gaussian priorN (0, I)
on the weight vectorw (i.e., weights are assumed a priori to be
independent). A flat prior is assumed on the bias termb. The



second term corresponds to the log-likelihood of the data for an
appropriately defined likelihood function [7]. Hence, we can in-
terpret the SVM optimization as maximum a posteriori (MAP)
estimation of the parametersw andb given the training data.

The above setup corresponds to a classification problem.
The regression problem can also be posed as a convex opti-
mization problem by choosing an appropriate distance measure
[1, 8] with the objective function given by the sum of the square
norm of the weight vector and an error term, as in the classi-
fication case. The dual of this problem again takes a form in
which features appear only in inner products with other fea-
tures. Furthermore, the interpretation of the SVM as a MAP
estimation still holds given an appropriate choice of likelihood
function [7]. Hence, even though the development in Section
3 will be done considering a classification problem for simplic-
ity, the method described and the interpretations given can be
equally applied to SVM regression problems.

3. Smoothing Kernel
Assume now that the feature vectorsx ∈ Rd have some kind
of spatial structure, i.e., that each componentk in this vec-
tors is somehow related to measurements taken on or around
a certain pointmk in an underlying feature spaceF , which
should be a metric space. As mentioned earlier, each compo-
nent ofx could, for example, correspond to the frequency of
a certain bin in a histogram. In this case, themk ’s could be
the centers of the bins. We will classify the feature vectorsxi

with an SVM, which means that our output will be given by
f(xi) = wT xi + b =

P

k
wkxk

i + b. It is natural to think
that the SVM weights that multiply components ofxi coming
from nearby regions inF should not vary widely from each
other. That is, the importance of the features, as measured by
the magnitude of the weight applied to them, cannot differ too
much for nearby regions.

3.1. Reformulating the SVM problem

We wish to modify the objective function in (1) by adding a
regularization termλδ(w), whereλ ≥ 0 is a tunable param-
eter andδ is some function of the weight vector that takes
small values when the vector issmooth(measuring smooth-
ness in theF domain) and large values when it is not. In all
the following we will assume that we can expressδ(w) as a
quadratic formwT Aw. The new objective function then is
J(w, ǫ) = 1

2
wT w + 1

2
λwT Aw + C

P

i
ǫi. As long as we

chooseA to be positive semidefinite,J(w, ǫ) will be convex.
Furthermore, sinceδ(w) is a quadratic form, we can assumeA
to be symmetric without loss of generality. In the next section
we will see one natural way of defining a positive semidefinite
matrixA that achieves the desired goal.

We can rewriteJ as 1
2
wT (I + λA)w + C

P

i
ǫi. Now,

by the change of variablẽw = Bw, with BT B = I + λA
(B is a matrix square root ofI + λA and can be chosen to be
real and symmetric sinceI + λA is real, positive definite and
symmetric), we can write the new optimization problem as

minimize J(w̃, ǫ) =
1

2
w̃T w̃ + C

m
X

i=1

ǫi

subject to yi(w̃
T x̃i + b) ≥ 1 − ǫi i = 0, ..., m

ǫi ≥ 0 i = 0, ..., m

(2)

wherex̃i = B−T xi (B is invertible sinceBT B = I + λA is
positive definite). Comparing this with (1) we see that we have
obtained a new SVM problem where the features are now the
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Figure 1: Rowk of the matricesM (round markers) andB−T

(triangular markers), plotted against theml.

x̃is. We can then implement this as an SVM problem on the
original features using a kernel given by

K(xi, xj) = xT
i B−1B−T xj = xT

i (I + λA)−1xj . (3)

We can interpret the optimization problem (2) probabilis-
tically as we did for the standard SVM problem in Section 2.
The problem (2) can be formulated as maximizing− 1

2
wT (I +

λA)w − C
Pm

i=1 l(yi(w
T xi + b)). This means that the prior

distribution on the weights is nowN (0, (I + λA)−1), as op-
posed toN (0, I). Therefore, we are now imposing a corre-
lation structure between the weights instead of assuming their
independence.

3.2. TheA matrix

Our aim is to design a matrixA such thatwT Aw is small for
smooth weight vectors and large otherwise. We will measure
the smoothness in the original feature spaceF by considering
the distance between themk ’s to which each of the components
of the vectorx are related. We define the matrixA to beMT M
(which results inA being positive semidefinite for any choice
of M ) where

Mk,l =



1 if k = l

−γkeαkd(ml,mk) otherwise

where d is a distance defined inF ; αk is determined such
that if l(k, s) is the index of thesth closest point tomk

thenMk,l(k,1) = 100Mk,l(k,n); andγk is determined so that
P

l 6=k
Mk,l = −1. This way,Mw resembles a discrete deriva-

tive of w since its kth component is given by(Mw)k =
wk −

P

l 6=k
alwl, with al = −Mk,l ≥ 0, for l 6= k, and

P

l 6=k
al = 1. The value ofn determines how manyw’s are

considered in the derivative. We choosen to be such that the
sum of the mixture weights for the closestn points tomk is
larger thanp, wherep is a tunable parameter. This way, the
derivative is computed over more points if we are in a low den-
sity region and over fewer points if we are in a high density
region.

Figure 1 shows a simple example whereF = R andd is
the Euclidean distance. The figure shows rowk of the matrices
M andB−T as a function of theml. Interestingly, the rows of
B−T (which is the matrix that multiplies our input featuresx)
resemble the impulse response of a smoothing filter. Asking for
smoothness on the SVM weights results in a smoothing trans-
formation on the input features. Nevertheless, this is a particular
smoothing transform that optimizes the trade-off between clas-
sification error and regularization. In fact, all other smoothing
procedures we have tried on the features have failed to give any
improvements.

4. Application to Sequential Data
We will consider the following setup as an example of a case
in which the feature vectors present an underlying spatial struc-
ture. Consider a classification problem in which the samples are



variable-length sequences (as is the case in most speech prob-
lems). These sequences are realizations of an underlying ran-
dom process whose characteristics depend on the class of the
sample. Specifically, each of our samples(fi, yi) consists of a
sequence of feature vectorsfi = {f t

i ∈ Rp; t = 1, . . . , Ni}
which corresponds to a single realization of the underlying ran-
dom process corresponding to the class of the sample,yi. We
wish to classify these samples using support vector machines.
To do this we need to define a transformation (which in turn
defines a kernel function) of the input features that turns the
variable-length sequences into fixed-length vectors.

We further assume that the features{f j
i } for samplei are

generated independently for eachj with the same distribution.
The empirical distribution for each sample will be parameter-
ized using the vector quantization (VQ) method described in
[3]. Briefly, the feature spaceF = Rp is divided into clusters
based on some held-out data. A Gaussian model is computed
for each clusterk by calculating the meanµk and the variance
Σk of the data assigned to the cluster. A GMM is then formed
by those Gaussians, with mixture weightsck given by the pro-
portion of samples assigned to each cluster. The transform is
finally composed by the posterior probabilities for each of the
Gaussians given the sample’s data. Explicitly, thekth compo-
nent of the transform corresponding to theith sample is given
by

xk
i =

1

Ni

Ni
X

j=1

Pr(G = k|f j
i ) =

1

Ni

Ni
X

j=1

gk(f j
i )ck

P

l
gl(f

j
i )cl

(4)

whereG is the random variable corresponding to the Gaussian
index andgk is the Gaussian distribution corresponding to index
k. These features can be considered asoftversion of a multidi-
mensional histogram, where each cell is replaced by a Gaussian
and the frequencies of the cells are replaced by the posteriors of
the Gaussians.

For these features, the most natural way to define the point
mk that represents the region over which the featurexk is ex-
tracted is to takemk = µk, the mean of the Gaussian for which
xk is the posterior. Using these values and the Euclidean dis-
tance we can define the matrixA as in Section 3.2.

In [2], Jaakkola and Haussler introduced a kernel spe-
cially designed for sequential features, called the Fisher ker-
nel. The kernel is defined asK(fi, fj) = UT

fi
I−1Ufj

, where
Uf = ∇θ log P (f |θ) is the Fisher score, withθ being the
parameters of some generative model for the featuresf and
I = Ef [UfUT

f ] the Fisher information matrix. Since the Fisher
scoreUf has expectation equal to zero, the Fisher information
matrix is simply its covariance matrix. Each element ofUf is
the gradient of the log-likelihood with respect to a parameter
and it describes how that parameter contributes to the process
of generating a certain sample.

The method described above is one instance of the Fisher
kernel where the generative modelP (f |θ) is given by the VQ
trained GMM. It can be shown that, in this setup, if we define
θk such thatck = θk/

P

k
θk, then theUfi

’s are equal to the
xi’s as defined in [4], up to a shift and a scale factor on each di-
mension. If we normalize the featuresx to have zero mean and
unit variance, then our kernelK(fi, fj) = xT

i xj is identical to
the Fisher kernel if we assumeI to be diagonal. Interestingly
though, we have found that more sophisticated transformations,
which aim to equalize the distribution of the components ofx,
work significantly better than simple subtraction of the mean
and division by standard deviation (which only equalizes the
first and second moments).

5. Experiments
Experiments were conducted on a text-independent speaker ver-
ification task. The goal is, given a speech sample and a claimed
speaker identity, to decide whether the claim is true or false.
This is a binary classification task for which SVMs were repeat-
edly found to outperform other classification methods. Here,
we focus on a system that uses prosodic features extracted over
automatically extracted syllable regions. The length of the se-
quencef for each sample is then the number of syllables in the
output of an automatic speech recognizer. For each syllable, a
set of 140 features is extracted, containing information about
the pitch, energy, and duration characteristics of the syllable.
We call these features Syllable NERFs (nonuniform extraction
region features). For a description of the features see [9].

The prosodic features,fi, for each sample are transformed
to fixed length vectors (referred to asxi) using the method de-
scribed in Section 4. Since the dimension of the vectors is large
(140) and the length of the sample sequences is usually small
(also in the hundreds), we cannot train a single GMM for the
complete feature vector. Instead the strategy described in [3] is
used. Briefly, each prosodic feature is transformed separately.
A GMM is obtained for each feature and for sequences of fea-
tures for two and three consecutive syllables or pauses. We call
these unigram, bigram and trigram models, respectively. This
allows us to model temporal dependencies, which we would ig-
nore otherwise. The transforms corresponding to each feature
and each sequence are concatenated together into the final vec-
tor xi. For each feature and each of its sequences, a matrix
M is computed. Theλ used for each case depends linearly
on the size of the corresponding GMM. The matrixI + λA is
then formed as a block diagonal matrix, with a block for each
individual GMM. Parameters were chosen so that the total num-
ber of features for each N-gram length is approximately equal:
11,000 for unigrams, 13,000 for bigrams, 14,000 for trigrams,
and 38,000 for the complete system.

Experiments were conducted using data from the NIST
speaker recognition evaluation (SRE) from 2005 and 2006. The
data from 2005 were used for parameter tuning. Each speaker
verification trial consists of a test sample and a speaker model.
The samples are one side of a telephone conversation with ap-
proximately 2.5 minutes of speech. We consider the 1- and 8-
side training conditions in which we are given 1 or 8 conver-
sation sides to train the speaker model. Each of these conver-
sations corresponds to one positive example when training the
SVM model for the speaker. The data used as negative exam-
ples for the SVM training are taken from 2003 and 2004 NIST
evaluations along with some FISHER data, resulting in a total
of 2122 conversation sides. The SRE2005 and SRE2006 tasks
contain 25,887 and 24,004 trials for the 1-side training condi-
tion and 17,216 and 15,105 trials for the 8-side training condi-
tion, respectively. The average number of syllables per conver-
sation side is around 600. Trials involving a test or train con-
versation side with fewer than 60 syllables were removed from
the original list prepared by NIST, resulting in the number of
trials mentioned above. The data used to obtain the GMMs for
each sequence were drawn from data from the 2003 and 2004
evaluations along with some FISHER data, yielding a total of
2456 conversation sides (2 sides from each of 1228 speakers)
with little overlap with the negative example data.

The performance measures used in this paper are the equal
error rate (EER), and NIST’s minimum detection cost function
(DCF), which is defined as the Bayesian risk with probability of
target equal to 0.01, cost of false alarm equal to 1, and cost of



Method none mean/std Gaussian uniform

Not smoothed 14.89 13.78 13.82 13.33
Smoothed 14.77 12.38 12.30 11.97

Table 1: Comparison of EER for different normalization
methods on SRE2005 1-side

miss equal to 10. SVMlight [10] is used to perform regression
on the class labels with a cost for errors on positive samples
equal to the ratio of negative samples to positive samples.

As mentioned earlier, the resulting vectorsxi are normal-
ized on a per-component basis using the statistics obtained on
the set of negative examples. We tried three different types of
normalization: subtraction of mean and division by standard
deviation (mean/std), conversion to normal, and conversion to
uniform. The last two methods correspond to transformations
designed to turn the distribution of each feature into a stan-
dard Gaussian and uniform distributions, respectively. Table
1 shows the results on SRE2005 for the different normalization
methods, with and without smoothing. We see that perform-
ing no normalization is suboptimal. We can understand this by
considering the interpretation of the SVM as MAP estimation
with a prior on the weights with equal variance on all compo-
nents. This means that large weights are penalized equally for
all components. This assumption implies that we expect fea-
tures with smaller ranges to be less important, since, a priori,
they would have a smaller contribution inf(x). The fact that
normalization is necessary in our experiments implies that fea-
tures with smaller range are as important as features with large
range, that is, regions with low probability are as important as
regions with high probability. Interestingly, although not yet
understood, uniform normalization outperforms the other two
normalization methods. Furthermore, smoothing gives an im-
provement only on normalized features. This means that we
can assume smoothness on the weights only after the ranges of
the input features have been normalized.

Table 2 shows the results for SRE2006. The first and last
lines (VQ and VQS) correspond to the system described in this
paper, without and with smoothing kernel, respectively, using
uniform normalization. The second and third lines show a com-
parison with two alternative systems. The VQB method uses
two GMMs for each GMM in the VQ system, a large one and a
smaller one, keeping the total number of Gaussians equal to that
of the VQ system. The smaller GMM results in more robust fea-
tures, which compensate in part for the noisiness of the larger
GMM. EM refers to a system for which the original GMMs are
obtained using the EM algorithm instead of simple VQ. Using
EM results in a GMM where Gaussians overlap each other sig-
nificantly, resulting in more robust but less sensitive features
(for more details on this, see [3]). Applying the smoothing ker-
nel to the EM system does not lead to improvement, arguably
because there is less noise present in these features. We see that
when only one positive sample is available VQS performs better
than the other three methods, although the difference between
EM and VQS is not significant (significance is measured here
by a McNemar test at level 0.05). When more positive examples
are available, smoothing still helps over the simple VQ system,
although the difference is not significant.

Figure 2 shows the EER for each N-gram length separately
and the overall system. Clearly, the improvement achieved from
smoothing is relatively larger for shorter N-grams, being 15%
for unigrams on both training conditions. We can see that, for
N-gram lengths of 1 and 2, VQS significantly outperforms all
three other systems in both conditions. For N-gram length equal
to 3 there is a significant improvement only over the simple VQ.

1-side 8-sides
Method

EER DCF EER DCF

VQ 13.65 0.601 4.91 0.241
VQB 13.28 0.575 4.91 0.228
EM 12.25 0.553 4.85 0.224
VQS 12.09 0.544 4.79 0.214

Table 2: System comparison for SRE2006
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Figure 2: EER for each N-gram length and the overall system
for SRE2006, for 1-side (left) and 8-side (right) training.

6. Conclusions
We presented a smoothing kernel derived from adding a regu-
larization term to the SVM objective function for the case in
which the input features are spatially related. We show results
in a speaker verification task, where the original syllable-level
prosodic features are transformed into a fixed-length vector us-
ing a particular implementation of the Fisher kernel. Results
show that the smoothing kernel leads to 10% improvement in
the overall system and 15% in the unigram-only system.

7. Acknowledgments
We thank the compression group at Stanford University for helpful dis-
cussions. This work was supported by NSF IIS-0544682. The views
herein are those of the authors and do not necessarily represent the
views of the funding agency.

8. References
[1] V. Vapnik, The nature of statistical learning theory, Springer, 1999.
[2] T. S. Jaakkola and D. Haussler, “Exploiting generative models in

discriminative classifiers,” inAdvances in Neural Information Pro-
cessing Systems, 1998, vol. 11, pp. 487–493.

[3] L. Ferrer, E. Shriberg, S. Kajarekar, and K. Sönmez, “Parame-
terization of prosodic feature distributions for SVM modeling in
speaker recognition,” inProc. ICASSP, Honolulu, Apr. 2007.

[4] N. Scheffer and J. F. Bonastre, “UBM-driven discriminative ap-
proach for speaker verification,” inProc. Odyssey-06, Puerto Rico,
USA, June 2006, pp. 1–7.

[5] V. Wan and S. Renals, “Speaker verification using sequence dis-
criminant support vector machines,”IEEE Trans. Speech Audio
Process., vol. 13, no. 2, pp. 203–210, 2005.

[6] W. Campbell, D. Sturim, and D. Reynolds, “Support vector ma-
chines using GMM supervectors for speaker verification,”IEEE
Signal Processing Letters, vol. 13, no. 5, pp. 308–311, May 2006.

[7] P. Sollich, “Probabilistic interpretation and bayesian methods for
support vector machines,” inProc. ICANN, Edinburgh, Sept. 1999,
pp. 91–96.
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