
The SRI AVEC-2014 Evaluation System 

 

Vikramjit Mitra 
SRI International 

333 Ravenswood Ave. 
Menlo Park, CA 94025 
vikramjit.mitra@sri.com 

 

Andreas Kathol 
SRI International 

333 Ravenswood Ave. 
Menlo Park, CA 94025 

andreas.kathol@sri.com 
 

Elizabeth Shriberg 
SRI International 

333 Ravenswood Ave. 
Menlo Park, CA 94025 

elizabeth.shriberg@sri.com 
 

Colleen Richey 
SRI International 

333 Ravenswood Ave. 
Menlo Park, CA 94025 
colleen.richey@sri.com 

 

Martin Graciarena 
SRI International 

333 Ravenswood Ave. 
Menlo Park, CA 94025 

martin.graciarena@sri.com 
 
 

Mitchell McLaren 
SRI International 

333 Ravenswood Ave. 
Menlo Park, CA 94025 

mitchell.mclaren@sri.com 
 

Dimitra Vergyri 
SRI International 

333 Ravenswood Ave. 
Menlo Park, CA 94025 
dimitra.vergyri@sri.com 

 

 

ABSTRACT 

Though depression is a common mental health problem with 

significant impact on human society, it often goes undetected. We 

explore a diverse set of features based only on spoken audio to 

understand which features correlate with self-reported depression 

scores according to the Beck depression rating scale. These 

features, many of which are novel for this task, include (1) 

estimated articulatory trajectories during speech production, (2) 

acoustic characteristics, (3) acoustic-phonetic characteristics and 

(4) prosodic features.  Features are modeled using a variety of 

approaches, including support vector regression, a Gaussian 

backend and decision trees. We report results on the AVEC-2014 

depression dataset and find that individual systems range from 

9.18 to 11.87 in root mean squared error (RMSE), and from 7.68 

to 9.99 in mean absolute error (MAE). Initial fusion brings further 

improvement; fusion and feature selection work is still in 

progress.    

Categories and Subject Descriptors 

I.5.4 [Computing Methodologies]: Pattern Recognition– signal 

processing; Waveform analysis 

J.4 [Computer Applications]: Social and Behavioral Sciences– 

psychology 

G.3 [Mathematics of Computing]: Probability and Statistics– 

correlation and regression analysis, robust regression, time 

series analysis; 

General Terms 

Algorithms, Measurement, Performance, Design, Reliability, 

Experimentation, Verification. 

Keywords 

Depression, robust signal analysis, acoustic features, articulatory 

features, prosody, support vector regression, decision trees, time 

series prediction. 

1. INTRODUCTION 
Depression affects the psychological state of a wide range of 

the human population and can be life-threatening for men, women 

[1] and even children [2]. Detection, evaluation, early treatment 

and therapy [3, 4] can help save a significant portion of patients 

suffering from depressive disorders and improve their quality of 

life. Accurate diagnosis of depressive symptoms, mainly assessed 

during interviews between the patient and the clinician, requires 

intensive training, experience and time. These clinical 

assessments provide the patient with an objective score based on 

the combined observation [21] of key symptoms typically 

observed with depression. Such interview-driven diagnosis is 

subjective in nature and both labor- and time-intensive. Automatic 

detection of depression can help physicians and medical 

practitioners detect depression earlier and facilitate quick 

evaluation and treatment. Audio-visual data can be used to build 

automated systems for depression detection, where knowledge of 

the key bio-signatures of depression in those data plays a 

dominant role in assuring high accuracy.   

Studies [5, 6] have analyzed the speech patterns of depressed 

patients before and after treatment with antidepressant 

medication; other studies [7, 8] have reported that the speech of a 

depressed person undergoes a shift compared to non-depressed 

subjects. Detection of depression from speech has been explored 

by several researchers and research groups in the past. The Audio-

Visual Emotion recognition Challenge (AVEC) [9], by providing 

audio-visual data for researchers, has created an ideal platform to 
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develop and evaluate systems for automated depression and affect 

detection.   

Speech has been one of the prime modalities explored for 

depression detection. A wide array of features have been explored 

in the literature, starting with standard mel-cepstral features 

(commonly known as the MFCCs) [10, 11], prosodic features 

(such as pitch, energy, and speaking rate, etc.) [12, 13, 14], and 

traditional spectral-based features (such as formants, formant 

bandwidths, spectral energies, spectral tilt, etc.) [11, 12, 13, 14, 

15, 22]. Recently, correlation structure features have been 

proposed in [16] along with delta mel-cepstral features and 

formant trajectories; using these features, significant improvement 

in depression level detection was observed in comparison to the 

standard baseline system. In a different study [17], MFCCs and 

their velocity and acceleration coefficients were used along with 

advanced machine learning techniques to perform depression 

level detection. Several studies [17, 18, 19, 20] have used both 

audio and video modalities. [18, 19] demonstrated that use of both 

the modalities improves the accuracy of an automated system 

compared to using each modality by itself. [17] demonstrated that 

the audio modality can give slightly better results than video; 

however, their combination performed slightly worse than both of 

them. 

In this paper we present our system, which is designed for 

the depression detection sub-challenge (DSC) of the AVEC-2014 

challenge [23] workshop using only audio data. The goal of this 

challenge is to predict, using audio-video data, an individual’s 

self-reported depression score, specified according to the Beck 

depression rating scale [24]. We analyzed an array of acoustic 

features that capture key relevant signatures of depression from 

speech and compared their individual performance with respect to 

each other. We present a robust fusion of multiple systems, which 

exploits complementary information amongst the subsystems to 

produce a robust prediction of depression score from speech. The 

detailed analysis provided us with key insights regarding the 

depression signatures in each of the features we explored and 

helped us to produce a system that outperforms the baseline 

system [23]. 

The rest of the paper is organized as follows. In Section 2 we 

present the audio-visual AVEC 2014 challenge data. Section 3 

presents the audio features explored in our work. Section 4 

presents the machine learning algorithms we explored. Section 5 

presents the results, followed by conclusions and future directions 

in Section 6.   

2. AVEC DATABASE 
 

The AVEC-2014 challenge dataset is a subset of the AVEC 

2013 audio-visual depression corpus [9], which contains 150 

videos of subjects performing a human-computer interaction task 

while being recorded by a webcam and a microphone. Each 

recording consists of only one person. The total number of 

subjects in the entire dataset is 84. Some subjects were recorded 

more than once: 18 subjects appear in three recordings, 31 in two, 

and the remaining 34 in only one recording. The duration of each 

recording ranged from 20 minutes to 50 minutes with an average 

duration of 25 minutes. The total duration of all clips is 240 hours. 

The average age of subjects was 31.5 years, with a standard 

deviation of 12.3 years and a range of 18 to 63 years. The 

recordings took place in a number of quiet settings; however, we 

observed some ambient noise, reverberation and artifacts 

introduced by the background into the audio part of the 

recordings.  

The recordings consisted of sustained vowel phonations 

which were spoken out loud while solving a task: counting 

numbers from one to ten; reading out loud; singing; telling a story 

from the subject's own past; and telling an imagined story. The 

recordings in the AVEC-2014 subset consist of only two tasks 

[23]: Northwind and Freeform, which were supplied as separate 

recordings, resulting in a total of 300 videos. The set of source 

videos is largely the same as that used for the AVEC-2013 

challenge; however, five pairs of previously unseen recordings 

were used by the organizers to replace a small number of videos 

used in the 2013 challenge.  

The audio data was collected using a headset microphone 

connected to the sound card of a laptop and sampled at various 

sampling rates. We re-sampled all the data to 16 kHz. The 

challenge data was split into three partitions of training, 

development and test sets with 50 Northwind-Freeform pairs in 

each set for a total of 300 task recordings. The train, dev and test 

sets had similar distributions in terms of age, gender, and 

depression levels for the partitions. There was no session overlap 

between partitions. The target depression scores for the training 

and development set were distributed to the challenge participants 

by the organizers. The test set scores were not provided. The 

estimated test set scores had to be sent to the challenge organizers 

who performed the scoring of the system performance in terms of 

mean absolute error (MAE) and root mean squared error (RMSE). 

 

3. AUDIO FEATURES 
 

We explored a wide array of acoustic features that capture 

speech articulation, acoustic-phonetic information, spectral 

representation, speech modulation, vocal effort, rhythmicity, 

speech prosody, vowel stress, speech intensity, etc. These features 

operate at multiple scales: some are low-level descriptors 

computed at a specific frame rate, while others are global 

descriptors, i.e., one feature for the whole waveform. We restrict 

ourselves to automatically extractable features that do not rely on 

words for two reasons: privacy and practicality. Word features 

also require speech recognition, which may or may not be 

available at high enough performance levels for a particular 

individual or context.  The details of each of the features explored 

in our work are provided below. 

 

Damped Oscillator Cepstral Coefficients (DOCC) [25] aim to 

model the dynamics of the hair cells within the human ear and try 

to capture the perceptually relevant information from audio. In the 

human auditory system, the hair cells detect the motion of 

incoming sound waves and excite the neurons of the auditory 

nerves. In DOCC processing (shown in Figure 1), the incoming 

speech signal is analyzed by a bank of gammatone filters (in this 

work, we used a bank of 40 gammatone filters equally spaced on 

the equivalent rectangular bandwidth (ERB) scale), which splits 

the signal into band-limited subband signals. In turn, these 

subband signals are used as the forcing functions to an array of 

damped oscillators whose response is used as the acoustic feature.  

As shown in Figure 1, each band-limited time signal from the 

gammatone filterbank is used to excite a forced underdamped 

oscillator and the response of the oscillator is given as: 

      
     

                             

           
  

       (1) 

       and  
       



where Fe is the externally applied force on the oscillators, in this 

case the output of the gammatone filterbank.    is the undamped 

angular frequency of the oscillator;   is the damping ratio; and    

is the sampling rate. 

 

Figure. 1. Block diagram of the damped oscillator-based 

feature extraction. 

 

DOCC is a channel- and noise-robust acoustic feature and, given 

that the AVEC-2014 audio data contain some degree of 

background distortion, it can be expected that robust features will 

be more effective than traditional MFCCs, which are more 

susceptible to noise and background distortions. Figure 2 shows 

the FFT spectrum of a signal corrupted with 3 dB high pass noise 

and the damped oscillator response of the same signal. 

 

Figure. 2. (a) Spectrogram of signal corrupted with 3 dB noise 

(top panel) and (b) Spectral representation of the damped 

oscillator response (bottom panel). 

 

More details about damped oscillator processing and the DOCC 

pipeline can be obtained in [25]. We analyzed the damped 

oscillator response by using a Hamming analysis window of 26 

ms with a frame rate of 10 ms. The power signal from the damped 

oscillator response was computed, then root compressed using the 

15th root followed by discrete cosine transformation (DCT). We 

retained the first 13 DCT coefficients and used them as the DOCC 

feature vector in our experiments.  

 

Normalized Modulation Cepstral Coefficients (NMCC) [26] 

are perceptually-motivated noise-robust acoustic features which 

are based on the speech perception studies [27, 28], which state 

that amplitude modulation (AM) of subband speech signals plays 

a pivotal role in human speech perception and recognition. Figure 

3 shows the block diagram of NMM feature generation. 

The NMCCs are obtained by tracking the AM trajectories of 

subband speech signals in the time domain using a Hamming 

window of 26 ms with a frame rate of 10 ms. In this processing, 

the speech signal was analyzed using a time-domain gammatone 

filterbank with 34 channels equally spaced on the ERB scale. The 

subband signals from the gammatone filterbanks were then 

processed using the Discrete Energy Separation algorithm 

(DESA) [29], which produced instantaneous estimates of AM 

signals. The powers of the AM signals were then root compressed 

using the 15th root and their DCT coefficients were generated. 

From these, only the first 13 coefficients were selected for use in 

the NMCC feature vector in our experiments. NMCCs have been 

found to be more noise- and channel-robust than MFCCs for 

automatic speech recognition (ASR) [26], speaker identification 

[30] and language recognition [31]. 

 

Figure 3. Flow diagram of NMCC feature extraction from 

speech. 

 

Modulation of Medium Duration Speech Amplitudes 
(MMeDuSA) [32, 33] features aim to track the subband AM 

signals of speech, but they use a medium duration analysis 

window and also track the overall summary modulation. The 

summary modulation plays an important role in tracking speech 

activity and in locating events such as vowel prominence/stress, 

etc. Figure 4 shows the block diagram of the MMeDuSA feature 

generation pipeline. 

 

 

Figure 4. Flow diagram of MMeDuSA feature extraction from 

speech. 

 

The MMeDuSA feature generation pipeline uses a time-domain 

gammatone filterbank with 40 channels equally spaced on the 

ERB scale. It employs the nonlinear Teager energy operator [34] 

to crudely estimate the AM signal from the band-limited subband 

signals. MMeDuSA uses a medium duration Hamming analysis 

window of 52 ms with a 10 ms frame rate and computes the AM 

power over the analysis window. The powers were root 

compressed using the 15th root and their DCT coefficients were 

obtained. From these, the first 13 coefficients were retained. 

Additionally, the AM signals from the subband channels were 

bandpass filtered to retain the modulation information within the 5 

to 200 Hz range, which was then summed across the frequency 

scale to produce a summary modulation signal. The power signal 

of the modulation summary was obtained, followed by 15th root 

compression. The result was transformed using DCT and the first 

three coefficients were retained and combined with the previous 

13-dimensional features to produce 16-dimensional MMeDuSA 

features. 

 



Gammatone Cepstral Coefficients (GCCs) use the gammatone 

filters, which are a linear approximation of the auditory filtering 

performed in the human ear. In GCC processing, speech is 

analyzed using a bank of 40 gammatone filters equally spaced on 

the ERB scale. The power of the bandlimited time signals within 

an analysis window of 26 ms was computed at a frame rate of 10 

ms. Subband powers were then root compressed using the 15th 

root and DCT was performed on the resultant. The first 13 DCT 

coefficients were retained as the GCC feature vector. 

 

 

Figure 5. Flow diagram of GCC feature extraction from 

speech. 

 

Articulatory Features (AFs), articulatory motions from 

spontaneous speech, have been demonstrated by previous studies 

[35, 36] to provide a sufficient degree of robustness for speech 

recognition tasks. Because depression affects a speaker’s 

production system, these features can potentially capture the 

relevant signatures of depression from speech. In this work, we 

used a deep neural network (DNN) with 150, 200, 100, 80, 60, 

and 40 neurons [35], where the number of neurons in each layer 

was optimized empirically and the depth of the network was 

increased incrementally. In this DNN architecture the input 

observations were time-contextualized NMCC features (generated 

from the acoustic waveform with multiple frames concatenated 

across time) and the outputs were time-domain vocal tract 

constriction variables (also abbreviated as TVs) as shown in 

Figure 7; their details are provided in Table 1. Figure 6 shows the 

articulatory feature extraction pipeline. 

 

Figure 6. Flow diagram of articulatory feature extraction 

from speech. 

 

Due to the lack of a natural speech dataset containing parallel data 

of acoustic waveforms and TVs, we used Haskins Laboratories’ 

Task Dynamic model (known as TADA [37]) to generate a 

synthetic English isolated-word speech corpus along with the 

TVs. TADA was used to generate a synthetic word corpus of 

111,929 words, where the words were borrowed from the CMU 

dictionary. TADA generated the corresponding TVs,  which are 

eight vocal tract constriction variables corresponding to: Lip 

Aperture (LA); Lip Protrusion (LP); Tongue Tip Constriction 

Degree (TTCD); Tongue Tip Constriction Location (TTCL); 

Tongue Body Constriction Degree (TBCD); Tongue Body 

Constriction Location (TBCL); Velic Opening (VEL); and Glottal 

Opening (GLO). 80% of the synthetic data was used for training 

the DNN; 10% was used as the cross-validation set; and the 

remaining 10% was used to test the DNN. 

Table 1. Constriction organ, vocal tract variables, their unit of 

measurement and dynamic range. 

Constriction 

organ 

Vocal tract variables  Unit Dynamic range 

Max Min 

Lip Lip Aperture (LA) mm 27.00 -4.00 

Lip Protrusion (LP) mm 12.00 8.08 

Tongue Tip 

 

Tongue tip constriction 

degree (TTCD) 

mm 31.07 -4.00 

Tongue tip constriction 

location (TTCL) 

degree 80.00 0.00 

Tongue 

Body 

Tongue body 

constriction degree 

(TBCD) 

mm 12.50 -2.00 

Tongue body 

constriction location 

(TBCL) 

degree 180.00 87.00 

Velum Velum (VEL) - 0.20 -0.20 

Glottis Glottis (GLO) - 0.74 0.00 
 

 

 

Figure 7. Eight tract variables from five distinct constriction 

locations. 

Acoustic Phonetic (AP) features [43] represent acoustic-phonetic 

information (e.g., formant information, mean Hilbert envelope, 

periodic and aperiodic energy in subbands [44], etc.) and are 

analyzed at a 5 millisecond frame rate with a 10 ms analysis 

window. 13 APs were selected to represent information such as 

reflection coefficients, mean Hilbert envelope, periodic energy, 

aperiodic energy [44], nasal energy [45], etc. Data such as 

periodic energy, Hilbert envelope, etc. provide information 

regarding voice quality, energy contour, etc., which should help to 

capture the level of emotion in speech. 

 

The Kaldi Pitch tracker [41] comes with the Kaldi pitch 

recognition toolkit [42] and provides a two-dimensional output 

consisting of pitch tracks and a normalized cross-correlation 

function that gives indication about voicing information. 

Depression usually results in speech with a lesser degree of 

excitement and pitch tracks would help to capture the degree of 

excitement in speech. 

 

Energy contour features: we also computed features intended to 

capture longer range information and/or simple statistics over a 

recording.  The energy contour (encon) feature [38] set aims to 

capture rhythmicity as well as overall speaking rate (without 

relying on phone recognition) by looking at the periodicity of 



energy peaks within each segment. The motivation for this work 

is that depressed speech may have a lower overall rate and be 

more temporally monotonous. This feature models the contour of 

10 millisecond windows of the first two coefficients (c0 and c1) 

from an MFCC front end; each cepstral stream is mean-

normalized over the utterance, making it robust to absolute level 

differences over both entire sessions and within-session segments. 

A discrete cosine transform is then taken over a 200 ms sliding 

window with a 100 ms shift. Vector components comprise the 

first 5 and 2 bases from the DCT over each window of c0 and c1, 

respectively.    

 

Spectral tilt features aim to capture vocal effort in a manner 

quasi-robust to extrinsic session variability, using methods 

developed in [38]. These features were extracted for voiced 

frames. Voicing was determined using a logistic regression 

classifier trained with number of zero crossings, log energy, 

number of peaks in the autocorrelation of the window signal, and 

standard deviation of the inter-peak distance, where the voicing 

threshold was set to 0.5.  The five component spectral tilt features 

include H2-H1, F1-H1, and F2-H1 (where H1, H2 are the lower-

order harmonics and F1,F2 are the first two formants), that reflect 

lower-order harmonics and formants given the microphone and 

room conditions. The last two features are measures of the 

spectral slope per frame, and the difference between the maximum 

of the log power spectrum and the maximum in the 2kHz-3kHz 

range.  

 

DLE features were designed to capture very local vocal effort 

changes in a manner that does not require normalization for 

overall speaking level. Our hypothesis is that such features can 

help to capture the degree of prosodic accentuation, which we 

expect to be lower for depressed subjects. These features measure 

the difference in log energy locally at the transition frames from 

voiceless speech to voiced speech, and conversely from voiced to 

voiceless speech.  DLE features are thus quite sparse, occurring 

only once per voiced region and with only a single feature 

dimension. 

 

Intonation-related features include Pitch features: f0, f0pk and 

f0pk-stats), which capture frame-level pitch, pitch peak 

distributions, and various statistics on the location of pitch peaks 

relative to each other and to segment boundaries.  The motivation 

is that if depressed speakers sound less animated, this should 

result in fewer peaks spaced more widely apart (a measure of 

speaking rate) and the peaks may be less extreme than for normal 

speakers. F0 is computed using default parameter settings for the 

snack PRAAT-style pitch tracker [39] and is used only for voiced 

regions according to the snack output. We expect pitch features to 

be robust to extrinsic variability, modulo the ability to detect pitch 

in a noisy or low-level signal. The f0-peak features record only 

the subset of pitch values found by an automatic peak-picking 

algorithm [40] run within each segment.  Statistics computed in 

the f0peak-stats features include both pitch level and pitch peak 

distribution information. Pitch level includes the mean, max, and 

standard deviation of the peak pitches in the segment.  Pitch peak 

distributions are intended to capture not pitch but rather the 

temporal distribution of pitch-accented syllables in the segment. 

These features include peak count, peak rate (count divided by 

segment duration), mean and maximum interpeak distances, and 

location of the maximum peak in the segment (e.g., early vs. late), 

each as a percentage of the way into the segment and as raw 

distance into the segment.  

 

Intensity-related features, including int and intpk, are defined 

and computed in a manner similar to the pitch features, but for 

intensity rather than pitch. Intensity was computed using default 

intensity parameters in Praat [39]).   Unlike pitch, we expect raw 

intensity values in int to reflect not only the speaker but also the 

recording session. Thus int and intpk are expected to partially 

reflect extrinsic factors. Table 2 provides a summary of all the 

feature types used in our experiments. 

 

Table 2. Summary of all the features explored in this study  

Name Type 

 

 

Extraction 

region 

Feature 

dimension 

Robustness 

to external 

session var. 

DOCC Acoustic 
26 ms window at 
10 ms frame rate 13 High 

NMCC Acoustic 
26 ms window at 
10 ms frame rate 13 High 

MMeDuSA Acoustic 

52 ms window at 

10 ms frame rate 16 High 

GCC Acoustic 

26 ms window at 

10 ms frame rate 13 Medium 

AF articulatory 

20 ms window at 

10 ms frame rate 8 High 

AP 

acoustic-

phonetic 

26 ms window at 

10 ms frame rate 12 Medium 

Tilt vocal effort 

voiced frames in 

segment 5 Medium 

dle-on vocal effort 

voiceless-

>voiced 

transitions in 

segment 1 High 

dle-off vocal effort 

voiced-

>voiceless 

transitions in 

segment 1 High 

Encon rhythmicity 

200ms window 

in segment 7 High 

Kaldi 

pitch 

pitch Frame 2 High 

f0 pitch  Frame 1 High 

f0pk 

pitch at 

peaks  

frames at peaks 

in segment 1 High 

f0pk-stats 

rhythmicity, 

rate, pitch 

peak locations in 

segment 

9  

(stats) High 

Int intensity  Frame 1 Low 

Intpk 

intensity at 

peaks 

frames at peaks 

in segment 1 Low 

 
In addition to the above features, we also used MFCC and 

IS13_ComParE features from the openSMILE toolkit [53] to 

benchmark the performance of the features explored in this work. 

 



4. FEATURE MODELING AND MACHINE 

LEARNING SYSTEMS 
 

The low-level spectral features (DOCC, NMCC, GCC and 

MMeDuSA) were time-contextualized using their delta features, 

and APs were contextualized using delta-delta features. The deltas 

and delta-deltas were calculated using the FILT approach detailed 

in [48], in which delta context was estimated with a window of 7 

frames. The AFs were contextualized using shifted deltas, where 

deltas after a frame hop of two were contextualized using a delta 

spread of 3 and stacking 3 deltas from either side of the current 

frame. All frame-level features were mean- and variance- 

normalized on a per-subject basis. In our experiments, both frame-

level and waveform-level features were used. We first converted 

all frame-level features to a waveform-level representation prior 

to training and classification. We found i-vectors [46] to be 

effective for this purpose. I-vectors are used in state-of-the-art 

speaker and language recognition technology [47, 46]. I-vectors 

use a generative modeling process, involving factor analysis on 

Baum-Welch statistics calculated from a Gaussian mixture model 

(GMM), to compress variable length feature vectors into a finite 

dimension vector. The i-vector w can be formulated as 

          (2) 

where s is the GMM mean supervector representing the Maximum 

A-Posteriori (MAP) point estimate of all data from a given 

recording, m the mean supervector from the Universal 

Background Model (UBM) trained on a large amount of AVEC 

data and T the low-rank i-vector subspace learned via factor 

analysis. Readers are directed to [46] for more details on the 

theory and implementation of i-vector subspace training and i-

vector extraction. In contrast to the speaker and language 

recognition fields in which a large multitude of training data is 

readily available to train the i-vector subspace T, very limited 

training data were available for the AVEC challenge. To 

compensate, we restrained the dimension of the UBM to 16 

Gaussian components and the i-vector subspace to only 30 

dimensions. Variable length frame-level features extracted from 

the AVEC data were converted to 30-dimensional i-vectors using 

this framework. Note that the i-vector dimension was not 

optimized for each individual feature; our initial observations 

indicated that an i-vector dimension of 30 gave reasonable 

performance; thus, we kept that dimension fixed in all our 

subsequent experiments. Figure 8 illustrates this process. As an 

alternative to the i-vectors, we also explored GMM supervectors 

as fixed length representations of low-level (frame-based) 

features. From our experiments we always observed that the i-

vectors perform better than the supervectors. 

 

 

Figure 8. Depression prediction pipeline for individual 

features. 

Once all recordings were represented as waveform-level vectors, 

we used support vector regression (SVR) [49] for classification. 

This was partially motivated by the success of SVR using i-

vectors for the purpose of age estimation from speech [50]. In the 

context of AVEC, SVR provides a means of estimating depression 

scores between those evident in the SVR model training data (for 

instance in the higher end of the scale). The SVR training was 

performed using the sklearn python package [51] based on a 

polynomial kernel of order 20. All waveform-level vectors were 

first rank-normalized based on the training set. Rank 

normalization involves replacing each value of a vector with its 

ranked 'position' within the corresponding dimension of the 

training data. The rank values are scaled to the range [0-1]. 

Depression levels were then estimated from the development set. 

This process was conducted using multiple SVR classifiers using 

different feature combinations as illustrated in Figure 9. 

 

Figure 9. System combination 

The depression scores from individual SVR classifiers were 

averaged to provide a means of equal-weight fusion. We used a 

held-out set of examples to train the fusion parameters. We 

observed that the benefit of fusion strategy failed to outweigh the 

loss in performance due to a reduction in system training data 

(after creating a held-out fusion set) for both i-vector extraction 

and SVR training. 

We also investigated utterance-level features including intensity 

and contour features extracted from the audio stream. For these 

utterance level features, the i-vector approach was typically 

infeasible; instead, we used the average and, optionally, the 

standard deviation and maximum value. Furthermore, we noticed 

that for these features, the SVR classifier was suboptimal. We 

explored classifiers including neural networks (NN), a simple 

Gaussian mixture model (GMM) classifier and an 'extratrees' 

classifier as provided in the sklearn toolkit [51]. For the NN and 

extratrees classifiers, parameter tuning was performed using the 

development set for each feature. The simple Gaussian classifier 

was based on its use for audio characterization in [52].  

 

5. EXPERIMENTAL RESULTS 
 

The proposed architecture using both the frame-level and 

utterance-level features was evaluated on the audio part of the 

Depression Sub-Challenge (DSC). The evaluation criteria of 

depression detection were mean absolute error (MAE) and root 

mean square error (RMSE). Table 3 shows the error metrics for 

the development and test sets from the AVEC-2014 audio, video 

baseline systems [23] and our proposed system. Our final system 

was obtained from 6-way leave-one-out (LOO) score fusion of the 

6 individual systems, where the 6 individual systems consisted of 

(1) i-vector fusion of MMeDuSA, AFs and NMCC features using 

SVR; (2) fusion of MFCC i-vectors, F0 i-vectors and F0-

supervectors using SVR; (3) i-vector fusion of DOCC and GCC 

features using SVR; (4) fusion of KaldiF0 i-vectors, AP i-vectors 

and KaldiF0 supervectors using SVR; (5) dle-offset features using 

decision trees; and (6) intensity features using decision trees. The 



result from this 6-way fusion on the development set gave results 

better than the AVEC-2014 DSC baseline for both audio- and 

video-only tasks. The fused system provided a relative reduction 

of 31.7% in MAE and 33.07% in RMSE compared to the 2014 

audio-only DSC baseline system. 

The lower half of Table 3 presents the results obtained from 

the 6-way fused system on the AVEC-2014 DSC audio-only test 

data. On the test data, our final system provided a relative 

reduction of 12.05% in MAE and 11.7% in RMSE compared to 

the 2014 audio-only baseline system. However, unlike the results 

on the development set, we did not observe a significant 

improvement in performance from our audio-only system 

compared to the video-only baseline DSC system. The 6-way 

fusion was optimized using the LOO score fusion as mentioned 

earlier using the development data. This may have given us a 

fusion configuration which may have failed to generalize well on 

the test data. 

Table 4 shows the error metrics on the development data 

using the individual feature-based systems. From Table 4 we can 

observe that DOCCs provided both the lowest MAE and RMSE 

among all the low-level features. Note that the AVEC-2014 audio 

baseline feature consisted of 2268 dimensions, whereas the low-

level features (after i-vector transformation) had only 30 

dimensions. All the features in our experiments were used in their 

default configurations and we did not perform any optimization of 

feature configuration in any of our experiments. However, we 

explored different ways of contextualizing feature sets and 

observed that the use of delta-based contextualization helped 

across all the features. DOCC, GCC, NMCC and MMeDuSA 

features are known to be robust against noise corruption, and we 

have observed some degree of background noise in several 

AVEC-2014 audio files; this may have been the key reason why 

all of these features performed better than the MFCC features and 

were comparable in performance to the AVEC-2014 baseline. 

For comparison purposes we also explored the Interspeech 

2013 ComParE baseline features distributed with the openSMILE 

toolkit [53]. In addition to the full 6K-dimensional ComParE set, 

we also explored reducing the full set to a 47-dimensional set 

using the approach specified in [54]. The latter version yielded 

slightly lower error rates than the full set, but in both cases error 

rates were higher than for any of our single features (Table 4). 

Note that the ComParE feature sets are not expected to provide us 

results comparing to the baseline as they were not originally 

designed to for a depression level detection task. 

 

Table 3. Performance of depression-level recognition for the 

development and test sets from the AVEC-2014 audio baseline 

systems and the SRI audio-only system.  Baselines for the 

video only system are also shown in italics but cannot be 

directly compared. 

 Features MAE RMSE 

D
ev

. 
se

t AVEC-2014 audio baseline 8.93 11.52 

AVEC-2014 video baseline 7.58 9.31 

SRI audio system 6.10 7.71 

T
es

t 
se

t AVEC-2014 audio baseline 10.04 12.57 

AVEC-2014 video baseline 8.86 10.86 

SRI’s audio system 8.83 11.10 

 

From Table 3 we observe that baseline performance from video is 

better than from audio. We noticed impressionistically from 

listening to the data that annotations of the audio did not always 

match the overall annotation for depression.  To better understand 

the role of audio features, we are currently performing a human 

annotation study in which the labeler has only the audio and no 

information on depression scores. We plan to rerun our classifiers 

using these additional labels and will report our findings to the 

community once completed. 

Table 4. Performance by feature type (Note that none of the 

features were optimized for the given task)   

Features MAE RMSE 

DOCC 7.44 9.19 

NMCC 8.14 9.92 

MMeDuSA 8.01 10.05 

GCC 7.53 9.36 

AFs 8.52 10.78 

APs 9.03 11.65 

KaldiF0 8.99 11.43 

Tilt 9.25 11.27 

dle-on 9.23 10.77 

dle-off 9.66 11.26 

Encon 9.61 11.47 

Kaldi Pitch 8.99 11.43 

f0 9.99 13.74 

f0pk 9.75 11.63 

f0pk-stats 9.03 11.65 

Int 10.16 12.00 

Intpk 9.88 11.87 

MFCC [53] 8.65 10.97 

 

6. CONCLUSION 
 

We have explored a wide array of features using the audio-only 

part of the AVEC- 2014 DSC sub-challenge. We have presented 

some features that have not previously been studied for this task. 

We have demonstrated that with suitable selection of low-

dimensional features it is possible to outperform a baseline system 

that consists of feature dimensions of one order more. However, it 

is worth noting that the low-dimensional i-vector based features 

presented in this work are a result of sophisticated and 

complicated modeling strategies which the high-dimensional 

features lack. We observed that performance can be improved by 

performing fusion at two levels: (1) fusing features at the i-vector 

or supervector level, and (2) fusing scores from multiple systems. 

We did not explore tuning the feature parameters, such as the 

number of cepstral coefficients in the low-level features, 

normalization of those features, etc. In the future, we will explore 

the configuration of each feature individually to help us 

understand better how each of these features behaves for the task 

of depression level detection. We will also explore other modeling 

techniques and better fusion strategies to improve the performance 

of our system beyond what has been reported in this paper. Our 



initial experiments have revealed that i-vector-level fusion of low-

level features can result in more accurate systems. We are 

currently exploring feature-fusion approaches, where feature 

fusion will be explored not only among the low-level features, but 

also among frame- and utterance-level features. 
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