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Abstract
Keyword Spotting (KWS) aims at detecting speech segments
that contain a given query within large amounts of audio data.
Typically, a speech recognizer is involved in a first indexing
step. One of the challenges of KWS is how to handle recogni-
tion errors and out-of-vocabulary (OOV) terms. This work pro-
poses the use of discriminative training to construct a phoneme
confusion model, which expands the phonemic index of a KWS
system by adding phonemic variation to handle the above-
mentioned problems. The objective function that is optimized is
the Figure of Merit (FOM), which is directly related to the KWS
performance. The experiments conducted on English data sets
show some improvement on the FOM and are promising for the
use of such technique.
Index Terms: keyword spotting, confusion model, discrimina-
tive training, Figure of Merit

1. Introduction
As the amount of real-world spoken data rapidly increases, the
ability to search it efficiently for particular words or phrases of
interest gains more importance. KWS aims at searching audio
data and detecting any given keyword, which is typically a sin-
gle word or a short phrase. KWS systems build for off-line data
processing usually operate in two phases: indexing and search.
The system processes the audio data once, during the indexing
phase, without knowledge of the query terms. This phase is
done off-line and is the more time-consuming one. The output
index is stored and accessed during the search phase, in order to
locate the terms and link them to the original audio.

Word-level indexing may seem to be a straightforward so-
lution, but it cannot handle OOV terms which are often named
entities not covered by the automatic speech recognition (ASR)
dictionaries. The OOV rate may increase with time, as dictio-
naries are usually fixed while the content of real-world data dy-
namically changes. Generating pronunciations for OOVs im-
plies having a letter-to-sound system, which is often not accu-
rate, especially for languages with limited resources. Augment-
ing the recognition system with pronunciation variants can help,
but implies regenerating the index and may introduce confus-
ability to the KWS system and increase the false alarms, espe-
cially if their weights are not properly tuned. Moreover, there
are many applications where the performance of the word rec-
ognizer is severely degraded due to challenging audio condi-
tions, and even in-vocabulary words are not successfully repre-
sented in the index. For these reasons, subword-level and par-
ticularly phonemic-based KWS systems have been used in the
past [1], which do not impose any vocabulary restrictions.
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In the current work, a phoneme index is created from lat-
tices generated by a phoneme recognizer, which allows us
to preserve information about phonemic uncertainty of the
phoneme recognition in the index. The phonemic index allows
detecting any word without constraining the system to the in-
vocabulary terms. However, the quality of the phoneme rec-
ognizer can be quite low, especially when dealing with data
recorded under noisy or mismatched conditions. For this rea-
son, a phoneme confusion model is introduced in this work. Its
goal is to predict the deviation of the phoneme recognition out-
put compared to the true spoken phonemes. Once applied on
the index, this confusion model acts as a corrector of the recog-
nition errors.

Our confusion model expands the index with alternative
phoneme sequences, which inherently introduce additional de-
tections when searching queries. This can be beneficial, espe-
cially if the space limitations forces us to significantly prune the
phoneme lattices to keep the index to a reasonable size. How-
ever, KWS performance optimization is a counterbalancing pro-
cedure of increasing the true detections while keeping the false
alarms low. To address this problem, we train the parameters of
the confusion model discriminatively, where the optimized ob-
jective function is the Figure of Merit (FOM), a well-established
evaluation metric of KWS performance. The FOM was also
used in [2] to directly optimize the weights of the index, which
had the form of a matrix of probabilistic acoustic scores. In [3],
it was used to optimize an interpolation factor when alternative
pronunciations were added for OOVs. To our knowledge this is
the first time it is used to train the weights of a phoneme confu-
sion model for KWS.

The rest of the paper is organized as follows. In Section 2
the KWS system is described. In Section 3 the discriminative
training of the phonemic confusion model is explained. In Sec-
tion 4 the experimental setup is documented, and in Section 5
the results are presented. The paper concludes in Section 6 with
some discussion and future work plans. The reader is consid-
ered to be familiar with the basic concepts of the theory of finite
state transducers for reading Sections 2 and 3. For more details,
he is referred to [4].

2. Keyword spotting system
2.1. Indexing and searching representation

As already mentioned, our KWS system operates in two phases:
indexing and search. In our work, the query terms are phoneme
sequences and the index is constructed from a set of phoneme
lattices generated for each input utterance using a phoneme
recognizer. As proposed in [5], the index is represented as a
weighted finite state transducer (WFST) allowing very efficient
search for queries. The index WFST is constructed in such a



way that every subsequence of phonemes found in any path of
any phoneme lattice is represented by exactly one successful
path. For such path, the sequence of input symbols corresponds
to the subsequence of phonemes and the output sequence identi-
fies the lattice/utterance. The index WFST is built on the lexico-
graphic semiring so that each path weight is a triple representing
the start time, the end time and the log posterior probability of
the phoneme subsequence appearing in the lattice at this time.
For more details on constructing the index WFST, we refer the
reader to [5].

The query terms are represented as weighted finite state ac-
ceptors (WFSA). In the simple case, where the query is a single
phoneme sequence, the acceptor is a linear sequence of arcs
with input symbols representing the corresponding phonemes.
The acceptor can have, however, more complicated topology,
where its individual paths represent a set of query terms we want
to search for. The acceptor can also represent multiple pronun-
ciation variants of a query word. In this last case, the weight of
each path represents the (log) probability of the corresponding
pronunciation variant.

Let the index and the query be represented by transducer
I and acceptor Q, respectively. The search can be performed
by composing the two automata Q ◦ I and sorting the paths
through the resulting transducer with the shortest-path algo-
rithm. Again, just like in the case of the original index WFST,
each path through the composed transducer encodes informa-
tion about the phoneme sequence, the lattice/utterance it was
detected in and the timing. The composed transducer, however,
contains only the phoneme sequences represented byQ. All the
FST manipulations are realized using the Openfst libraries [6].

2.2. Confusion model

Now, we want to take into account the fact that the query
phoneme sequence can get assigned wrong posterior probability
in the index (e.g. because of a systematic error of the phoneme
recognizer) or is completely missing from the index (e.g. be-
cause of lattice pruning needed to obtain an index of a rea-
sonable size). For these reasons, a confusion model is intro-
duced reflecting our assumption that a phoneme sequence can
get (with a certain probability) misrecognized as a different se-
quence, which we may wish to search for instead. In this work,
we consider only simple context independent confusion model,
assuming that each phoneme can get with a certain probability
inserted, deleted or substituted by another phoneme. The con-
fusion model is represented as a WFST on the tropical semir-
ing with all arcs looping in a single state. For each arc, the
weight w(i, o) can be interpreted as the log probability that the
phoneme represented by the input symbol i gets misrecognized
as the output symbol o. An empty symbol ε can be used as in-
put symbol to represent insertion or output symbol to represent
deletion.

A query transducer Q can be now composed with a given
confusion model C to obtain an expanded query transducer
Q ◦ C. For each path through Q ◦ C, the output symbols
represent the phoneme sequence we want to search for in the
index instead of the original query (input symbol sequence).
The weight of the path then represents the assumed probabil-
ity that the output sequence (if found in the index) is in fact the
misrecognized input sequence. Finally, the search of the ex-
panded query in the index I can be performed by composing
all three transducers Q ◦ C ◦ I . Alternatively, this composi-
tion can be seen as searching the original query Q in the ex-
panded/corrected index C ◦ I . Again, each path through the

final transducer Q ◦C ◦ I can be interpreted as the detection of
a query phoneme sequence in a particular lattice/utterance at a
particular time. The weight of the k-th such path (e.g. as ob-
tained from shortest-path algorithm) defines the detection score
sk. Note that the score combines the weight wk of the confu-
sion model C and the weight (log posterior) nk of the index I
as

sk = wk + nk, (1)

which naturally expresses that the final score is the product (sum
in log domain) of two probabilities: 1) probability of misrecog-
nizing the original query as a different phoneme sequence and
2) probability of detecting that sequence in the index. We can
further decompose the confusion model’s path weight into the
contributions of the individual phonemes j as

wk =
∑
j

w(ikj , okj). (2)

It should be noted that the confusion model’s output symbols
okj are not visible in the final transducer Q ◦ C ◦ I , as these
are consumed by the composition of C and I . However, for
the discriminative training, as will be detailed below, it is still
needed to keep track of all the contributing scores w(ikj , okj)
for each detection.

2.3. Confusion model initialization

The weights of the confusion model transducer w(i, o) are the
discriminatively trained parameters as will be described in Sec-
tion 3.2. To get reasonable initial values for the weights, we
obtain the one-best phoneme recognition output from our train-
ing corpora, align it with the reference phoneme sequence, and
count the number of phoneme specific insertions, deletions and
substitutions. The weights are thus initialized as follows: For
the insertion of the output phoneme o, the weight (log probabil-
ity) is set as

w(ε, o) = log
# of insertions of phoneme o
# of all recognized phonemes

. (3)

All other weights are initialized as

w(i, o) = log

(
P (non-ins)

# of i recognized as o
# of i in the reference

)
, (4)

where the probability of the output symbol not being inserted

P (non-ins) = 1− # of all insertions
# of all recognized phonemes

(5)

and where o = ε corresponds to phoneme deletion.

3. Confusion model training
3.1. The Figure of Merit

As the criterion for the discriminative training of the confusion
model’s parameters we use the FOM. The FOM is defined as the
detection rate averaged over the range of 0 to 10 false alarms per
hour and over the individual queries [7]. Equivalently, it can be
interpreted as the normalized area under the Receiver Operating
Characteristic (ROC) curve in that false alarm range. To eval-
uate FOM for a given data set and a given set of queries, we
enumerated detections by applying the shortest-path algorithm
to Q ◦ C ◦ I transducer. Based on the reference transcription,
the detections are assigned into two sets: set of true detections
R+ and set of false alarms R−. In accordance with the FOM



definition, only the top scoring detections are assigned to the
sets R+ and R− corresponding to 10 false alarms per hour and
query term. More precisely the top scoring detections are se-
lected, so that |R−| ≈ A = 10|Q|T , where |Q| is the number
of query terms and T is the number of hours of speech. The
FOM is defined as

FOM =
1

A

∑
j∈R−

∑
k∈R+

hkH(sk, sj), (6)

where sk is the score for detection k as defined by equation (1),
hk = 1/(|Q|Occ(k)), Occ(k) is the number of true occur-
rences of the query term corresponding to detection k in the
reference transcript, and

H(sk, sj) =

{
1 sk > sj

0 otherwise.
(7)

In accordance with the FOM definition, this formula can be in-
terpreted as a numerical integration over the ROC curve: Let the
outer sum, performed over false detections j, be sorted by de-
creasing scores sk. Then, the sum can be seen as an integration
over the false alarm rate axis (i.e. each detection j corresponds
to one more false alarm) with an appropriate integration step
1/A corresponding to the axis scale. Therefore, each j repre-
sents a certain false alarm rate obtained with the score thresh-
old sk. For a given false alarm rate j, the inner sum can be
interpreted as the corresponding detection rate (averaged over
queries) calculated as the appropriately normalized number of
true detections exceeding the threshold sk.

As can be seen from the formula, the FOM can be also in-
terpreted as a metric testing the discriminative power of the de-
tection scores by expressing the KWS as the problem of ranking
hits above false alarms.

3.2. Discriminatively optimizing the Figure of Merit

Since the FOM is not a continuous differentiable function,
which is required for our optimization, we closely approximate
it as

f =
1

A

∑
k∈R+

hk

∑
j∈R−

ς(sk, sj) (8)

ς(sk, sj) =
1

1 + exp(−α(sk − sj))
, (9)

where the step function H(sk, sj) is approximated by a sig-
moid ς(sk, sj) [8]. The tunable parameter a is set to a = 1 for
this work. Note also that, compared to equation (6), we have
switched the order of the two sums to allow a more efficient
evaluation.

The confusion model parameters are trained to maximize
the objective function f on the training data and using the train-
ing queries described in Section 4. For the optimization, we use
a simple gradient descent algorithm with a fixed step, which
requires the evaluation of the derivatives

∂f

∂w(i, o)
=

α

A

∑
k∈R+

hk

∑
j∈R−

ς(sk, sj)(1− ς(sk, sj))

[
∂sk

∂w(i, o)
− ∂sj
∂w(i, o)

]
, (10)

where ∂sk/∂w(i, o) is simply the number of times the weight
w(i, o) occurs in the sum of equation (2).

Intuitively, in order to increase the FOM, the weights
w(i, o) should change such that the scores of hits increase with
respect to the scores of false alarms. Note that when optimizing
the weights we do not put any constraint on them, so that they
may not correspond to any probabilistic model in the end.

4. Experimental setup
Experiments on English data were conducted. For the phoneme
recognizer, acoustic models developed for the RT-04 evalua-
tion, which were also used for the SRI STD-06 submission for
the broadcast news task [9], were applied. In particular, gen-
der independent cross-word triphone PLP models were trained
for a set of 45 phones (including pause, reject and two hesi-
tation specific phones). 13 PLP coefficients plus 1st, 2nd and
3rd order derivatives were used, while cepstral mean and vari-
ance normalization, vocal tract length normalization and HLDA
to reduce dimentionality to 39 were applied. Decision tree
state clustering was used to cluster the triphone states to about
2500 states, and 200 Gaussians per state were trained using 5
MLE training iterations and 4 discriminative (alternating MPE-
MMIE) training iterations. The training data were LDC distri-
butions including: Hub4 1996 and 1997 (200h), TDT4 (275h)
TDT2 (272h) and BNr1234(2300h). The output lattices were
pruned in a preprocessing step before the index construction.

The data set for the discriminative training of the confusion
model’s weights consisted of 8 hours of broadcast news (BN)
data. The KWS performance of the proposed technique was
evaluated on the NIST STD06 evaluation [10] set consisting of
3 hours of data. Two disjoint sets of query terms were used
for training and evaluation. From the training data, 1217 query
words were extracted and translated to their phonemic transcrip-
tions. The transcriptions longer than 3 phonemes were kept. To
avoid biased results, the 100 most frequent words but also the
words that occurred less than 5 times were not selected. The
evaluation queries were the same 1104 terms that were used for
the NIST STD06 evaluation.

5. Results
The performance metric adopted in this work is the FOM (see
Section 3.1), which is the one we try to optimize. The results
will be presented in terms of the ROC curves showing the sys-
tem performance for different operation points.

Figure 1: ROC curves on training data



The baseline system is the one, where the KWS search is
realized on the index before applying the confusion model and
expanding the search space. The initialized confusion model is
then applied and discriminatively trained to maximize the FOM
on the training data. Figure 1 presents the ROC curves on the
training data before training, after 10 iterations and after 50 it-
erations of the training algorithm. It can be seen that the area
under the ROC curve is indeed increased.

Figure 2: ROC curves on evaluation data

We have found that it is beneficial to smooth the trained
confusion model before applying it to the evaluation data. The
smoothing chosen here is the linear interpolation of the trained
confusion model weights with a null model, which consid-
ers zero probabilities for substitutions, deletions and inser-
tions and probabilities one for correct phoneme recognitions.
The interpolation factor was set to 0.5. The curve for the
smoothed trained model in Figure 2 corresponds to this interpo-
lated model. Some degradation is seen for the low false alarms
region (less that 1 false alarm per hour per query term), but then
some improvement is observed, which increases for high false
alarms numbers. For this area, if a random horizontal line is
drawn in Figure 2, it can be actually seen that there is achieved
an important decrease in the false alarms number for the same
hit rate when the smoothed trained model is applied. For ex-
ample, for a hit rate of 0.45, the false alarms number decreases
from 5 (baseline curve) to 2.5 (interpolated trained curve) false
alarms per hour and per query term. It should be noted that
the value of the baseline performance is fairly acceptable for a
phonemic KWS system.

6. Conclusion and Future work
We have presented a phoneme confusion model for the KWS
that allows recovery from recognition errors, and enables de-
tection of OOVs. A discriminative approach for training its
weights was applied based on the direct optimization of the
FOM. The approach was tested for English. However, it is
language-independent and could be applied to other languages,
potentially including languages with limited resources where
the OOV problem is more extensive. In terms of FOM per-
formance a promising improvement was observed on the evalu-
ation set.

The confusion model is applied on the index constructed us-
ing the output lattices of a phone-loop recognizer. In the future
we plan to apply it also to hybrid systems that use both word and

phoneme recognition. The confusion model used in this work
does not take into account any phoneme context. It is our aim to
try to use at least bigram phoneme confusion models and expect
to achieve better KWS results. Our aim is also a better initializa-
tion of the confusion model and we have already started work-
ing in this direction. In addition, other more complex methods
to train the parameters of our model could be investigated dur-
ing the FOM optimization. Last but not least, currently the con-
fusion model just add bias to the posterior scores. Instead, more
complicated confusion models could be developed that operate
directly on the acoustic scores from which the posteriors are
computed. In this case, the confusion model could represent a
multiplicative or additive correction to the acoustic scores.
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