
ADAPTIVE AND DISCRIMINATIVE MODELING FOR IMPROVED 
 MISPRONUNCIATION DETECTION  

 
Horacio Franco, Luciana Ferrer, and Harry Bratt 

 
Speech Technology and Research Laboratory, SRI International, Menlo Park, CA 

 
 

ABSTRACT 
 
In the context of computer-aided language learning, automatic 
detection of specific phone mispronunciations by nonnative 
speakers can be used to provide detailed feedback about specific 
pronunciation problems. In previous work we found that 
significant improvements could be achieved, compared to standard 
approaches that compute posteriors with respect to native models, 
by explicitly modeling both mispronunciations and correct 
pronunciations by nonnative speakers. In this work, we extend our 
approach with the use of model adaptation and discriminative 
modeling techniques, inspired on methods that have been effective 
in the area of speaker identification. Two systems were developed, 
one based on Bayesian adaptation of Gaussian Mixture Models 
(GMMs), and likelihood-ratio-based detection, and another one 
based on Support Vector Machines classification of supervectors 
derived from adapted GMMs.  Both systems, and their 
combination, were evaluated in a phonetically transcribed Spanish 
database of 130,000 phones uttered in continuous speech sentences 
by 206 nonnative speakers, showing significant improvements 
from our previous best system. 
 

Index Terms— Mispronunciation detection, computer-aided  
language learning. 
 

1. INTRODUCTION 
 
Using computers to help students learn and practice a new 
language has long been seen as a promising area for the use of 
automatic speech recognition (ASR) technology. It could allow 
spoken language to be used in many ways in language-learning 
activities, for example by supporting different types of oral 
practice and enabling feedback on various dimensions of language 
proficiency, including language use and pronunciation quality. A 
desirable feature of the use of speech technology for computer-
aided language learning (CALL) is the ability to provide 
meaningful feedback on pronunciation quality. In this area of 
pronunciation scoring, the smaller the unit to be scored, the higher 
the uncertainty in the associated score [1]. Currently, the most 
reliable estimates of pronunciation quality are overall levels 
obtained from a paragraph composed of several sentences that can 
be used to characterize the speaker’s overall pronunciation 
proficiency.  At this level, it has been shown that automatic scoring 
performs as well as human scoring [2].  

For many CALL applications we would like to score smaller 
units, to allow the student to focus on specific aspects of his or her 
speech production.  For instance, overall pronunciation scoring can 
be obtained at the sentence level [3], [4], with a level of accuracy 

that, while lower than that of human scoring, can nonetheless 
provide valuable feedback for language learning [5]. More detailed 
feedback, at the level of individual phones, can direct attention to 
specific phones that are mispronounced [1], [6-11].  

In earlier work [9], we compared two approaches for phone 
mispronunciation detection. The first was based on using native 
models as a reference, obtaining a measure of the phone-level 
degree of match to a corresponding native model [1]. The second 
approach was based on using explicit acoustic models for the 
correct and for the mispronounced utterances of a phone, and 
computing a likelihood ratio using these two models.  We found 
that the second approach was more accurate, resulting in an 
average 9% relative reduction in the equal error rate (EER) of the 
mispronunciation detection.  

In this paper we extend the work on acoustic modeling of 
correct and mispronounced nonnative phones by using more 
advanced acoustic modeling techniques based on adaptation and 
discriminative modeling. The proposed techniques are inspired by 
approaches that have been effective on significantly improving 
accuracy in another area of speech technology – namely, speaker 
recognition. The first proposed approach uses model adaptation in 
a form that is inspired by the Gaussian Mixture Model-Universal 
Background Model (GMM-UBM) speaker verification system 
proposed by Reynolds et al. [12].  This approach has shown to be 
more effective than other adaptation approaches when used for a 
detection task, particularly when limited adaptation data is 
available. The second proposed approach is based on the use of 
discriminant classifiers based on support vector machines (SVMs) 
using as an input feature a GMM supervector consisting of the 
stacked means and weights of the mixture components. The GMM 
supervector is obtained by adapting a GMM-UBM to a test 
utterance [13]. We also explored the combination of the scores 
from these two approaches.  
    The outline of this paper is as follows: in Section 2 we review 
the baseline approach and present the new approaches explored in 
this paper, in Section 3 we describe the database that we use to 
evaluate them, and in Section 4 we present our experimental results 
comparing the different approaches. Section 5 concludes this work. 
 
 

2. PHONE-LEVEL MISPRONUNCIATION 
DETECTION APPROACHES 

 
Earlier modeling approaches [1], [7] used basically a native model 
to produce a measure of goodness for the nonnative speech. While 
this measure correlates very well with human judgments for longer 
segments (i.e., paragraphs or sentences), the correlation decreases 
for shorter segments, such as phones [1].  



     After labeling a database for phone-level mispronunciations  
[14], in [9] we explored a more detailed acoustic modeling to 
attempt to capture the subtle differences between the nonnative 
speech realizations that are considered acceptable versus the 
nonnative speech realizations that are considered mispronounced.    
In that work we compared two mispronunciation detection 
schemes. The first approach was based on phone log-posterior 
scores  [15], [1]. The phone log-posterior scores are similar to the 
GOP scores introduced in [7], but log-posterior probabilities are 
computed at the frame level, and averaged over the frames of a 
given phone segment. The second approach was based on explicit 
acoustic modeling, using GMMs, of the nonnative productions of 
correct and mispronounced phones [9]. A log-likelihood ratio 
(LLR) of mispronounced and correct phone models was used as 
the measure of pronunciation quality in the second method.  We 
found significant improvements from the use of the explicit 
mispronunciation modeling using the GMM-LLR approach. 
Nevertheless, it should be noted that the explicit acoustic modeling 
of mispronunciation comes at a price: it is necessary to collect and 
annotate a nonnative training database, and the resulting models 
are dependent on the first language of the nonnative speakers. 
    In this work we aim to further develop the explicit modeling of 
mispronunciations by using newer acoustic modeling techniques 
that can be more effective dealing with the challenges of this task. 
In the following approaches we assumed that the phonetic 
segmentation is obtained by computing a forced alignment with an 
HMM, using the corresponding speech transcription and a 
pronunciation dictionary. 

 
2.1. System 1: LLR of independently trained GMMs 
 
Our baseline approach for mispronunciation detection is the GMM-
LLR proposed in [9], where for each phone class we trained two 
different GMMs: one model is trained with the “correct” native-like 
pronunciations of a phone, while the other model is trained with the 
“mispronounced” or nonnative pronunciations of the same phone. 
In the evaluation phase, for each phone segment qi, a length-
normalized log-likelihood ratio score LLR(qi) was computed by 

using the “mispronounced”, , and the “correct”, , 
pronunciation models, respectively, where LLR(qi) is defined  as 

      (1) 

where  is the probability of the acoustic feature  for 

the frame at time given the phone class  and the model . 
The normalization by the phone duration di allows definition of 
unique thresholds for the LLR for each phone class, independent of 
the lengths of the segments. A mispronunciation is detected when 
the LLR is above a predetermined threshold, specific to each 
phone. In this system we used diagonal covariance GMMs for all 
phone models, and for each phone and each class (“correct” or 
“mispronounced”), the corresponding GMM was created with a 
number of mixture components proportional to the number of 
samples for the phone for that class. The proportion is a tunable 
parameter that can be optimized. 
 
2.2. System 2: LLR of adapted GMMs 
 
This system is similar to baseline System 1, except that the models 
for each class (“correct” and “mispronounced”), for each phone, 

are obtained by adaptation. The model to which they are adapted is 
trained using all the samples from a given phone, ignoring the 
class. We use Bayesian adaptation [16] to adapt this class-
independent GMM to all the “correctly” pronounced training 
examples for a phone, and obtain the adapted “correct” model for 
such phone. We proceed similarly to obtain the adapted 
“mispronounced” model for such phone. For these class-dependent 
GMMs we adapt both the means and the mixture weights to the 
class-specific data.  
   With these two adapted models we can compute, for any test 
phone, the LLR of the adapted “mispronounced” model to the 
adapted “correct” model. The key point in this approach is that the 
models used to compute the LLR are not trained independently, but 
are derived from the same class-independent model. This provides 
a tighter coupling between the “mispronounced” and the “correct” 
model, which has been shown to produce better performance in the 
area of speaker detection [12]. 
 
2.3 System 3:  SVM classifier based on adapted GMM 
supervector 
 
Inspired by the work on [13], we use the class-independent GMM 
trained for System 2 to create supervectors by adapting this GMM 
to each phone instance. The supervector for a certain phone 
instance is obtained by adapting the means and mixture weights of 
the original GMM to the acoustic feature vector representing the 
phone. This operation corresponds to a transformation of the phone 
segment acoustic feature vectors into a fixed high-dimension 
feature vector in the GMM supervector space. In our preliminary 
experimentation, we found that adapting only the means or only 
the weights of the GMM gives worse performance than adapting 
both means and weights. The supervectors are then normalized to 
have the same variance in all dimensions, using the statistics found 
in the training data, and fed to a linear SVM [17].  
   Given a test phone instance, its supervector x is first computed 
by adaptation of the class-independent GMM to the phone feature 
vector frames. The distance of that supervector to the SVM 
hyperplane is taken as the score for the phone. 
 
2.4.  System 4: Combination of Systems 2 and 3 
 
We combined the two best systems by using a simple weighted 
combination of the scores given by each of the two systems for 
each phone. No tuning was done on the weights because we lacked 
an additional development set with which to tune it. We used a 
weight of 0.25 for System 2 and 0.75 for System 3, since the range 
of the scores of System 3 is around three times smaller than the 
range for those of System 2. So, the weight was just used for 
equalizing the score ranges. The same weight was used for all 
phone classes for each system. 
 

3. DATABASE DESCRIPTION 
 
To evaluate these modeling approaches we used a phonetically 
transcribed subset of the nonnative Spanish database described in 
[14]. All speech data was read speech from Spanish newspapers 
with no repeated sentences, aiming at developing text-independent 
systems. Four native Spanish-speaking expert phoneticians 
transcribed 2550 sentences, totaling 130,000 phones, of nonnative 
speech data. Those sentences, randomly divided among the 
transcribers, were produced by 206 nonnative speakers whose 
native language was American English. Their levels of proficiency 



 
Figure 1:  EER in % for the four systems, for each phone, in increasing 
order of EER for the baseline System 1 (LLR). System 2 is denoted as LLR 
w/adaptation, System 3 is SVM based, and System 4 is the combination of  
Sytems 2 and 3. 
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were varied, and an attempt was made to balance the number of 
speakers by level of proficiency as well as by gender.  An 
additional set of sentences (one newspaper sentence from each of 
the 206 speakers), the common pool, was transcribed by all four 
phoneticians to assess human-human consistency.  For this study, 
the detailed phone-level transcriptions were collapsed into two 
categories: native-like and nonnative pronunciations.    
  To assess how consistently humans can detect mispronunciations 
we used the 206 common sentences from the transcribed database, 
and used the Kappa coefficient statistic [18], to determine how 
reliably the transcribers agree on the transcription for each of the 
28 native phones.  For nine of the phones (/β/, /δ/, /γ/, /b/, /w/, /m/, 
/ñ/, /i/ ,/s/), all four transcribers showed at least a moderate level of 
agreement (using K > 0.4  to mean “moderate” agreement).  
 

4. EXPERIMENTAL SETUP AND RESULTS 
 
Our mispronunciation detection approaches assume that the 
phonetic segmentation is given and accurate. Therefore, the task 
for which the mispronunciation detection is used must be designed 
to ensure a good speech recognition performance. Examples of 
such tasks are reading aloud and multiple-choice exercises.   
   For our experiments we generated phonetic alignments using the 
EduSpeak [19] HMM-based speech recognizer. The acoustic 
features were standard 13-dimensional Mel frequency cepstral 
coefficients (MFCCs) plus their delta coefficients obtained every 
10 ms, based on a sliding 25-ms Hamming window. The C0 
coefficient was normalized by the maximum over each sentence. 
Cepstral mean normalization was applied at the sentence level for 
C1 to C12. The acoustic models used to generate the phonetic 
alignments were gender independent, Genonic GMMs, as 
introduced in [20]. 
   Given the alignments, the detection of mispronunciation is 
reduced to a binary classification of the phone’s feature vectors, as 
the phone class is given by the alignments. The performance of the 
mispronunciation detection algorithms was evaluated as a function 
of the threshold applied to the detection score, for each phone 

class. For each threshold we obtained the machine-produced labels 
“correct” (C) or “mispronounced” (M), for each phone utterance. 
Then, we compared the machine labels with the labels obtained 
from the phoneticians’ transcriptions. For each threshold we 
computed two error measures: the probability of a false positive, 
estimated as the percent of cases where a phone utterance is 
labeled by the machine as incorrect when it was in fact correct, and 
the probability of a false negative – that is, the probability that the 
machine labeled a phone utterance as correct when it was in fact 
incorrect. 
   For each phone we evaluated the receiver operating characteristic 
(ROC) curve, and found the points of equal error rate (EER), 
where the probability of false positive is equal to the probability of 
false negative. Note that in an actual application of the 
mispronunciation detection system, criteria other than the EER 
may define an operating point along the ROC curve. For instance, 
for pedagogical reasons we may want to impose a maximum 
acceptable level of false positives. 
   We used a four-way jackknifing procedure to train and test these 
approaches on the same phonetically transcribed nonnative 
database. We trained models using data from three partitions and 
tested on the remaining partition, rotating the procedure four times 
over the four partitions. There were no common speakers across 
any of the partitions.  When reporting results for a given system, 
the errors obtained for each of the four partitions were pooled to 
obtain mispronunciation detection average performance on the 
complete database. 
 
4.1 System training and tuning 
 
For System 1 we replicated the results from the original work [9] 
with our current GMM training software. As different phones have 
different amounts of training data, we explored the number of 
mixture components to use for each phone class GMM, and found 
that the proportion of 25 training samples for each mixture 
component resulted in the best performance for this system. The 
number of mixture components ranged from 2 to 531.  
   In developing System 2 we found that the optimal number of 
mixture components of the class-independent GMM for each 
phone was approximately the sum of the sizes of the class-
dependent GMMs for each phone from System 1. We estimated the 
Bayesian adapted model using the detailed procedure described in 
[12]. 
   To train the SVM for System 3 we used the software package 
SVM-light [17], which can efficiently handle large training sets 
and allows for asymmetric cost factors.  
 
4.2 Experimental results 
 
In Table 1 and Figure 1 we show the EER for mispronunciation 
detection for each of the systems and for every phone. In Table1 
we also show, for each system, weighted averages of the EER over 
all phones, where the weight was the relative frequency of each 
phone. 
   The GMM approach of System 1, the baseline system, had an 
average EER of 31.8%. The phones with the best performance 
were the approximants /β/, /δ/, /γ/, the voiced stop /b/, the 
semivowel /w/, the nasal /m/, and the fricative /x/.  These phones 
have very good agreement with the phones with the highest Kappa. 
   The use of adaptation in System 2 produced a significant 
reduction of EER across most of the phones. The largest 
improvements occurred for the voiced stop /g/, the voiceless velar 



fricative /x/, the voiceless palatal affricate /ʧ/ and /g/, (21.6%, 
11.6%, 10.7%, and 10.1% relative reduction with respect to 
System 1, respectively). These phone classes had less data than the 
average, showing that the adaptation approach is effective in 
dealing with smaller amounts of training data.  Some of the largest 
EER reductions occurred for phones that were not necessarily 
among the most reliably transcribed, which suggests that the 
adaptation approach took advantage of additional useful 
information in the noisy transcriptions. The overall weighted EER 
reduction with the adaptation approach was 3.5% relative to the 
baseline system. There were also a few phones where the EER was 
slightly worse than the baseline, mainly for /s/, /d/, and /n/. 
 

Table 1. Equal Error Rate at the phone level for the four Systems 
studied. Weighted averages of the EER for each system are shown 
at the bottom.  We also show the number of samples labeled as 
Correct or Mispronounced for each phone. 

 Equal Error Rate # samples 
Phone Sys. 1 Sys. 2 Sys. 3 Sys. 4 Corr. Mispr. 
b  13.3   12.6  14.1 11.8  668 490 
x  14.2   12.6  16.3 12.7    752  190 
m  14.4   14.5  14.2  13.9   4037  874 
w  15.6   14.7  14.5  14.1    922  628 
δ  17.7   17.5  17.6  16.5    1188  2497 
γ   17.6   15.8  17.6  17.0    283  788 
g  25.9   20.3  19.6  18.1    1124  143 
β  21.3   19.7  20.1  18.4    554  1471 
ñ  23.4  23.1  18.8  19.5   1157 559 
z  22.3   22.4  22.7  21.4    238  1246 
i  25.6   24.8 24.2  23.6   6153 1539 
s  25.4   26.7  26.6  25.1     9520  587 
l  28.3  27.8  26.7  26.1     4358 1729 
t  31.1   29.3  27.9  28.1     3671  1902 
p  33.0   31.8  28.2  28.3    2098  1310 
k  32.3   29.6  30.5  28.8     2142  1861 
y  32.3   30.8  30.9  29.1     3050  730 
r  33.9   32.5  31.7  30.5     4561  3258 
u  34.3   31.9  32.3  31.3     2420  592 
rr  35.7   33.6  33.1  31.7     613  2192 
a  34.6   32.7  33.6  32.4   12655 2617 
ʧ 41.7   37.2 35.0  34.8     510  129 
e  38.2   35.9  36.4  35.0   13258 4385 
d  36.5   38.1  36.5  36.5     965  107 
o  40.5   39.1  37.8  36.9   10072 2627 
n  40.9   42.1  40.3  39.4   8944 601 
Avg. 31.8  30.7 30.3 29.3 - - 

 
 
   The SVM-based System 3 produced a larger average EER 
reduction than System 2. Compared with System 1, the biggest 
EER reductions happened in phones /g/, / ñ /, /ʧ/, and /p/ (24%, 
20%, 16%, and 14% relative EER reductions, respectively). 
Comparing Systems 2 and 3, we find that significant additional 
EER reductions occurred for the phones /ñ/ and /p/ (18.8% and 
11.5% relative reductions, respectively), while some other phones 
had smaller gains. There was also significantly degraded 
performance for phones /x/, /b/, /γ/ (-29.4%, -11.7%, -11.2%) 
relative to System 2. These performance losses were unexpected, 
as these phones are among the set of best-performing phones in the 

baseline system, and they are also among the phones with high 
consistency in their transcriptions. They do have less training data 
compared to the other phones in the set of best-performing phones 
in the baseline system, which might have had an effect on this 
approach. The overall weighted EER reduction of System 3 with 
respect to System 1 and System 2 was 4.7% and 1.3%, 
respectively. 
   System 4, based on combining the scores of System 2 and 
System 3, was the best-performing system. It produced 
improvements over System 3 mostly on the phones /x/ and /b/ that 
had been degraded by System 3, also having moderate gains over 
most phones. Comparing System 4 with the baseline System 1 we 
appreciate that the combination of systems produces large gains on 
most phones ranging from relative EER reductions of 29.6% for /g/ 
to ~18% for /ʧ/, /n/, and /p/, and 10% to 12% for /b/, /rr/, /x/, /b/, 
/t/, /u/, /w/, gradually going down for the remaining phones. It is 
noteworthy that the EER reductions obtained by System 2 and 
System 3 with respect to the baseline resulted in reinforcing EER 
reductions for many phones in the combined system (see, for 
instance, /g/, /rr/, /ʧ/, etc.) Overall, the weighted EER relative 
reduction of System 4 with respect to the baseline System 1 was 
8%, showing an almost additive combination of the average gains 
from System 2 and System 3. These results suggest that the 
improvements brought by these two systems over System 1 are 
highly complementary.  Also, we observe that in a few cases the 
EER of the combination system was slightly higher than either of 
the combined systems, suggesting that per-phone combination 
weights could improve System 4. 
   In general, the phones with the lowest EER were also those more 
consistently labeled by the transcribers. Nine phones had EER 
below 20%; among those, seven had Kappa above 0.4 while the 
other two did not have enough data in the common sentences data 
set to assess Kappa. 

 
5. CONCLUSION 

 
We studied approaches for detection of mispronunciations, based 
on the explicit acoustic modeling of correct and mispronounced 
training examples.  
   We proposed and analyzed two new mispronunciation detection 
algorithms. The first is based on computing the GMM likelihood 
ratio of adapted models to the correct and mispronounced training 
examples for each phone class. The second approach is based on 
discriminative modeling using supervectors derived from the 
parameters of GMMs adapted to phone segments modeled by SVM 
classifiers trained on examples of correct and mispronounced 
phones. Both methods proved to be superior to our previous 
mispronunciation detection system based on the LLR of 
independently trained GMMs, which had been previously shown to 
outperform the standard method that uses phone log-posteriors as 
scores.  
   The first approach produced a relative reduction of the weighted 
average EER of 3.5%, while the second approach produced a 4.7% 
relative reduction of the weighted average EER. Furthermore, a 
third system based on the combination of the scores provided by 
the first two new systems produced an almost additive error 
reduction, resulting in an 8% relative reduction for the average 
EER.  
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