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ABSTRACT
With the recent introduction of speaker embeddings for
text-independent speaker recognition, many fundamen-
tal questions require addressing in order to fast-track the
development of this new era of technology. Of particular
interest is the ability of the speaker embeddings network
to leverage artificially degraded data at a far greater rate
beyond prior technologies, even in the evaluation of nat-
urally degraded data. In this study, we aim to explore
some of the fundamental requirements for building a
good speaker embeddings extractor. We analyze the
impact of voice activity detection, types of degradation,
the amount of degraded data, and number of speakers
required for a good network. These aspects are ana-
lyzed over a large set of 11 conditions from 7 evaluation
datasets. We lay out a set of recommendations for train-
ing the network based on the observed trends. By ap-
plying these recommendations to enhance the default
recipe provided in the Kaldi toolkit, a significant gain of
13-21% on the Speakers in the Wild and NIST SRE’16
datasets is achieved.

1. INTRODUCTION

In recent years, the use of deep neural networks (DNNs)
in speaker recognition has progressed rapidly with
the introduction of automatic speech recognition (ASR)
DNNs to replace the role of the universal background
model (UBM) [1], the use of bottleneck features in com-
bination with traditional features [2], the use of d-vectors
for text-dependent speaker identification (SID) [3], and
more recently, the use of x-vectors or speaker embed-
dings for text-independent SID [4, 5, 6]. This article
focuses on the speaker embeddings technology, which
has proven to provide a significant gain over prior tech-
nology (DNN-based i-vectors) along with the ability to
generalize more readily to unseen audio conditions.

Along with the new technology comes many open
avenues for driving the research forward. Prior to ex-

ploring these research avenues, numerous fundamen-
tal questions require exploration to provide a reason-
able grounding into what forms a solid baseline or stan-
dard system training approach. For the research com-
munity, the publicly-available Kaldi software provides a
recipe for training a good embeddings extractor [7]. This
recipe, however, relies on numerous datasets available
under LDC license, preventing research groups without
licenses from progressing from using the recipe as a
starting point. To help understand the data needs of
the embeddings DNN, our main focus in this article is
on the quality and quantity of data used for this pur-
pose. As prior publications have already demonstrated
the strength of embeddings compared to i-vectors [5, 6],
we restrain the scope of this work to the embeddings
framework alone.

In this study, we aim to answer the question of how
to train a robust speaker embeddings extractor. Trends
are analyzed using the PRISM training set for the DNN
and evaluated on 11 conditions from 7 different datasets
for a thorough analysis. We start by analyzing the im-
pact of voice activity detection during training and eval-
uation of the embeddings network. We then investigate
the impact of varying the degree of degradations in the
network training to find a inflection point at which the
network starts to degrade. Additionally, we analyze the
relative impact of each type of degradation from noise,
music, reverb, and audio compression. Once we define
a robust degradation protocol, we analyze how many
speakers and copies of degraded data are required to
produce a good embeddings extractor. We also briefly
consider the impact of minibatch size during training.
The trends and findings observed in the study are con-
cisely laid out as a set of recommendations for training
a speaker embeddings SID system. These recommen-
dations are then used to enhance the default recipe pro-
vided in Kaldi and benchmarked on the SRE’16 [8] and
Speakers in the Wild (SITW) [9] datasets.



2. SYSTEM SETUP

We start with the default Kaldi recipe [7], keeping the
DNN parameters fixed for the entirety of this study, to
enable focusing on the extractor’s data needs. This is
based on the assumption that the Kaldi team have al-
ready roughly tuned the parameters of the embeddings
recipe. The embeddings network starts with five frame-
level hidden layers, all using rectified linear unit (ReLU)
activation and batch normalization [10]. The first three
layers incrementally add time context with stacking of
[-2,-1,0,1,2], [-2,0,2], and [-3,0,3] instances of the in-
put frame. A statistics pooling layer then stacks the
mean and standard deviation of the frames per audio
segment, resulting in a 3000 dimensional segment-level
representation. The final two hidden layers of 512 nodes
operate at the segment-level and use ReLU activation
and batch normalization prior to the output layer, which
targets speaker labels for each audio segment using log
softmax as the output. The embeddings are extracted
from the first segment-level hidden layer of 512 nodes.

In contrast to the default Kaldi recipe, we replace the
Mel frequency cepstral coefficients (MFCC) features,
speech activity detection (SAD), and audio-degradation
process from Kaldi with our own, while leveraging Kaldi
for producing DNN training audio chunks of 2–4 sec-
onds of speech each, shuffling them, and training the
DNN. Once trained, we use our Python tools to train
a gender-independent probabilistic linear discriminant
analysis (PLDA) model and evaluate numerous datasets
for a thorough benchmark of each DNN. Our SAD is
based on a DNN with two hidden layers with 500/100
nodes, respectively, and used 20-dimensional MFCC
features, stacked with 31 frames, and mean and vari-
ance normalization over a 201-frame window. The opti-
mal threshold found using an i-vector framework over a
large development set was found to be 0.5.

2.1. Training Data

We focus on a subset of training data provided in the
Kaldi recipe [7]. Specifically, we use only the raw audio
(without artificial degradation) from the PRISM training
lists [11] for DNN training, and the default PRISM train-
ing lists with additional transcoded data for PLDA train-
ing [12]. These lists stay constant throughout this study
with the exception of the DNN training lists, in which we
investigate the adding of artificially degraded copies of
the training data as well as the number of speakers in
the training set.

2.2. Degradations

We focus on four main types of degradation: (1) reverb,
(2) compression, (3) non-vocal music, and (4) noise,
which consists of a range of cafe, babble, road, traf-
fic, mechanical, and natural noises. All noises were
sourced from freesound.org and are high quality,
natural recordings of live environments. All reverb sig-
nals were sourced online from echothief.com and
represent the true impulse response from real loca-
tions. Compression involved using more than 30 dif-
ferent codec-bitrate pairs per our prior article on com-
pressed speech [12]. Non-vocal music was sourced
form a single CD collection of 100 instrumental songs
covering a wide range of genres. Noise or music degra-
dations were added to the audio using the Filtering and
Noise-adding Toolkit (FaNT), reverb using Fconv, and
compression was performed using FFmpeg or the tools
provided with the codecs themselves.

2.3. Evaluation Data

For evaluation, we use 11 conditions from 7 different
datasets, of which 6 are publically available. These
are defined in Table 1. For the analysis of discrimina-
tive power, we look at the average EER across these
sets. We provide the EER performance for each set in
the table in order to give readers an idea of the break-
down in performance per dataset. The system used to
produce these metrics is the best performing system in
Section 5.

3. THE ROLE OF SPEECH ACTIVITY DETECTION
IN DNN TRAINING

An often-overlooked aspect of speech technology is the
impact of SAD. In contrast to the i-vector framework with
benefits from a strict SAD threshold in both training and
testing, we demonstrate in this section that the embed-
dings DNN can potentially benefit from a more relaxed
threshold during training.

3.1. SAD during DNN training

We start with a SAD threshold of 0.5 that was tuned
on our i-vector pipeline. DNNs are known to require
large amounts of training data and, in the case of em-
beddings, benefit from artificial degradations [6]. Given
this information, one of the easiest ways to provide more
data for DNN training is reducing the SAD threshold to
provide more speech frames. This obviously has the
potential drawback of providing fewer voiced or noise



Table 1: The evaluation datasets with corresponding characteristics and target/impostor (tgt/imp) trial counts used
in this study. The first five datasets, had audio cut to 10, 20, 30, and 60 second samples of speech to invoke duration
variability. The EER is reported for the best performing system in Figure 1 of Section 5.

Dataset Characteristics Speakers Tgt / Imp trials EER

Ahumada 25 [13] Castilian Spanish, tel/mic 25 117k / 2.8m 2.1%
Gaudi 25 [13] Castilian Spanish, tel/mic 25 229k / 5.1m 4.3%
FVC Aus [14] Australia Eng., mic 544 182k / 35.8m 2.3%
FVC Cmn [15] Chinese Mandarin, female only, mic 68 16k / 1.1m 10.0%
RATS source [16] Five non-English lang., tel, 1,2, or 3 enroll. samples 336 66k / 21.9m 4.5%
SITW dev [9] English, mixed cond. 119 2.6k / 335k 6.1%
SITW eval [9] English, mixed cond. 180 3.7k / 717k 6.3%
PRISM clean [11] English, tel/mic 413 11.3k / 580k 1.7%
PRISM noise [11] English, noises 8-20 db SNR 385 39k / 9.3m 1.8%
PRISM reverb [11] English, artificial reverb RT 0.3-0.7 385 39k / 9.5m 1.2%
PRISM codec [12] English, transcoded with range of codecs 385 22k / 5.3m 1.5%

frames to the DNN training. However, given the em-
beddings DNN uses a statistics pooling layer that sum-
marizes training segments between 200–400 frames, so
long as there is sufficient speech within each segment
such that the speaker identity can be extracted, then
having fewer speech-like frames is a natural way to pro-
duce noisier segments in DNN training. The assumption
is that these noisier frames will force the DNN to focus
on the crucial aspects within the hidden layers in order
to extract the speaker information in the context of noise
and other degradations.

Along with the changing the SAD threshold, we in-
vestigated the use of supplying the SAD log-likelihood
ratio (LLR) at the input of the DNN along with the MFCC
input features in anticipation of the DNN leveraging this
information to appropriately weight each frame based
on the speech LLR. In this case, we still applied a hard
SAD threshold to ensure the DNN was not trained on an
overwhelming amount of silence.

Apart from the SAD threshold, an additional factor to
consider is whether SAD is determined from the raw sig-
nal and then applied to the degraded signals as is done
in the Kaldi toolkit (referred to as “overlay SAD” in this
work) or is run on degraded signals directly. The latter
case typically results in fewer frames from the degraded
signals due to, for instance, low signal-to-ratio (SNR)
signals drowning out the speech content. In the light
of providing speech frames representative of the SAD
used in evaluation, one would assume applying SAD di-
rectly to the degraded speech signal is intuitive.

Results are provided in Table 2 for using an embed-
dings network trained using the raw data plus one copy
from noise and codec degradations. We see that reduc-
ing the SAD threshold to -0.5 provides a rather modest
gain in the system. Using overlay SAD allowed for a

Table 2: Average EER across 11 evaluation subsets
when varying the SAD threshold and method of deter-
mining SAD during embeddings network training. The
SAD for backend and evaluation embeddings remained
constant.

SAD threshold
SAD method 0.5 -0.5 -1.5

SAD on each file 4.80% 4.71% 4.71%
+ LLR into DNN 4.78% 4.80% 4.69%
Overlay 4.79% 4.69% 4.68%

Overlay (Kaldi SAD with default parameters) 4.81%

lower threshold of -1.5 which provided further gain. Note
that by using -1.5 instead of 0.5, the available frames for
training increased by a factor of 1.4. Using the LLR in
combination with the input feature provided no obvious
gain. We believe the proper way to use this LLR would
be in the statistics layer as a form of weighting, much the
same way as is done in our SoftSAD for statistics in i-
vectors [17]. We additionally present results when using
the default SAD from the Kaldi toolkit in network training
only. This simple energy-based SAD does not appear to
provide a major drawback during DNN training, as SAD
is performed on the raw speech and overlaid on the de-
graded signal.

Although there is a limited shift in performance be-
tween different parameters, it is evident that the embed-
dings network is capable of coping with fewer speech-
like frames, so long as a decent SAD model is used.
From this point on, we opt to use overlay SAD with a
threshold of -1.5 for all DNN training data, while holding
the evaluation SAD threshold constant at 0.5.



3.2. SAD for Extracting Embeddings

Given the benefit of lowering of the SAD threshold dur-
ing training, expecting the embeddings network to be
more robust to low-quality speech frames during evalu-
ation seems reasonable. Additionally, using a threshold
for training that is different from that used in evaluation
is counterintuitive. To validate these assumptions, we
swept the SAD threshold used in embeddings extrac-
tion for the PLDA backend and evaluation segments.
Results show that performance degrades rather linearly
from 4.68% to 4.77% when sweeping the threshold from
0.5 to -1.5 as used in DNN training. While this repre-
sents only a 2% reduction in performance, it would ap-
pear that using a high SAD threshold provides the best
performance and the benefit of a low SAD threshold is
likely limited to the DNN training process.

4. EMBEDDINGS TRAINING DATA ANALYSES

The focus of this paper is on how to train a good speaker
embeddings extractor. Data and artificial degradations
are a major part of this process [6]. We consider the
requirements of degraded data in this section.

4.1. Equal Treatment of Speakers

Each class (speaker) in network training does not nec-
essarily provide equal influence on the training of the
embeddings network. Speakers with segments that are
difficult to classify may force the DNN to focus more of
its discriminating power on these speakers rather than
on other speakers that are easy to classify. To illustrate
this, we trained an embeddings DNN on (1) the PRISM
training data (including original degradations on a sub-
set of a close-talking microphone), (2) just the raw, non-
degraded data from the PRISM training lists, and (3)
the raw audio from the PRISM lists with one additional
degradation copy with noise. We observed that the non-
degraded PRISM lists (2) provided a better DNN than
the original PRISM lists (1) by 13% relative. We be-
lieve this finding is due to the use of only a small sub-
set of speakers (210 of 3296) having artificially corrupt
data during DNN training, forcing the DNN to focus on
resolving the issues associated with this corrupt data
for speaker classification, and thus being biased to this
subset of speakers containing difficult audio. In con-
trast, adding only a single copy of each audio file with
a random noise signal at 5 db SNR with set (3) pro-
vided a significant 25% relative gain in average EER
across the benchmarking datasets. This exemplifies the
importance of degradations in DNN training as well as
maintaining speaker balance across the degraded con-
ditions, so as to reduce the likelihood of either speaker

Fig. 1: Average EER when evaluating the addition of
pitch and speed variation to raw signals during DNN
training.

bias in the DNN, or having the DNN focus on a particular
subset of conditions.

4.2. Speed and Pitch Degradation

While prior work has shown the benefit of extrinsic
degradations [6] and this is something we extend on
in this work, the impact on simulated intrinsic speaker
variation has not yet been considered. In this section,
we analyze the impact of two common methods of data
modification to elicit intrinsic variability: speed and pitch.
For this process, we start with an extractor trained only
on the raw PRISM data, and add two copies of mod-
ified data. The first type is speed-modified via sox to
be slower or faster than the original audio by a factor
in the range of 0.90–0.95 and 1.05–1.10. The second
is the reducing or increasing of pitch via sox to -150 to
-50 cents and 50 to 150 cents, where 100 cents is a
semitone. Each of these degradations made a notable
difference to the signal at the extreme parameter values,
while still maintaining a natural sound to the speech au-
dio. To ensure a fair comparison, we also report results
when re-using the raw data three times with different au-
dio labels. This has the effect of covering a wider range
of the audio content as the Kaldi recipe naturally limits
the number of examples randomly selected per speaker
per iteration (a small subset of the data covered in a full
epoch) during training (default of 35).

Results in Figure 1 show that using speed varia-
tion as a degradation provides a limited impact on per-
formance over the use of a single copy of the non-
degraded raw data. Pitch variation offers better per-
formance than speed variation, but provides no benefit
over using an equivalent amount of copies of the original
raw data. Besides showing that pitch and speed vari-
ation do not improve performance of the embeddings
DNN, the difference between Raw and Raw 3-fold ad-
ditionally indicates that when limited data is available,
exposure to more of the content may be necessary to
ensure sufficient data coverage during DNN training.



(a) Compression and Reverb

(b) Noise and Music

Fig. 2: Average EER when evaluating pools of degrada-
tions to combine with the raw DNN training data. Only
two copies of the data were used in DNN training (raw +
degraded from the defined pool). The Best X-of-Y indi-
cates expanding the pool for random selection to include
the best individual degrees of degradation.

4.3. Assessing Degradation Level and Type

The aim of this section is to observe the effect of dif-
ferent levels of each degradation in order to determine
whether a limit exists for each. This was done through
combining raw data with a single copy of the data de-
graded with a specific degradation (such as 5 db SNR
music). While the significance of results is hard to gauge
given the relatively limited amount of DNN training data,
we can observe the following trends in Figure 2:

• Codecs: High compression (low bitrate) provides
the worst performance, while combining all codecs
is best.

• Reverb: There is a linear relationship between re-
verb level and EER. Unlike codecs, the full selec-
tion of reverb signals does not outperform using
just low-level reverb.

• Noise and Music: Performance improves from 20
db SNR to 5 db SNR, but then quickly degrades at
0 db SNR. This appears to be a cutoff point for
training data. Varying SNR selection within the
best-N-of-5 does not appear to provide a signifi-
cant difference over using the lowest reasonable
SNR of 5 db SNR.

From these trends, diversity in degradation appears
to be more important than the degree (i.e., SNR) of the
degradation. For this reason, in the remaining exper-
iments, we randomly select from all available codecs
and fix additive noise to the apparent cutoff point that
provides reasonable performance: 5 db SNR. Note that
it is, at this point, unclear as to whether high-reverb sig-
nals degrade system performance when used in DNN
training.

Next, we determine the relative importance of each
type of degradation. First a DNN baseline was trained
using the raw data and four copies of degradations
(noise at 5 db SNR, music at 5 db SNR, all codecs,
and all reverb signals). To determine the relative im-
portance of each type of degradation, we trained DNNs
each missing one of the degradation types, and also
a DNN was trained only on degraded files (no raw in-
cluded). These DNNs were effectively trained on 80%
of the data used in the baseline and are indicated as
light blue bars in Figure 3.

Observing the results in Figure 3, we can see that
all DNNs trained using the full selection of reverb levels
are located in the top four bars; they consistently offer
the worse performance. The comparison of raw+CMNR
and raw+CMN exemplify the fact that using reverb in the
current form degrades performance even though more
data is being added to the DNN. Based on the trends
in Figure 2, we restricted the reverb levels to low re-
verb only. This provided the best performing system
labeled as raw+CMNlowR. While this tends to contra-
dict the trend in Figure 2 in that ’All’ reverbs provided
reasonable performance, the current context of pooling
multiple degradation types is more relevant to the end
goal of producing a quality embeddings DNN. The con-
clusion can be drawn, therefore, that the embeddings
DNN is quite willing to accept a variety of degradations;
however, a very low level SNR (i.e., 0 db) degrades per-
formance and similarly, the embeddings network is sen-
sitive to high levels of reverberation.

5. DATA QUANTITY

Given that artificially degraded data is simple to gen-
erate and that the embeddings DNN responds well to
degraded data, we now aim to answer two important
questions:

• How much degraded data is enough?

• How many speakers are necessary?

To address these questions, we define three sets of
raw data: the full raw PRISM training set consisting of
53,174 segments from 3,296 speakers, and then a ran-
dom selection of 2000 and 1000 speakers from this full



Fig. 3: Average EER using a leave-one-out approach
to DNN training to determine the relative influence of
each degradation. The dark bars indicate five-fold train-
ing data, while light bars indicate the leave-one-out with
codec, music, noise, reverb being indicated by C, M, N,
and R, respectively. The key lowR indicates the restric-
tion of the reverb pool to low reverb impulse responses
only.

Fig. 4: Average EER when evaluating DNNs trained us-
ing 3296, 2000, or 1000 speakers when incrementally
adding more copies of degraded data (4-fold each time)
during DNN training.

set, which contained 31,342 and 16,045 segments, re-
spectively. From these base sets, we incrementally in-
crease the training data through artificial degradations
so as to analyze the effect of data quantity for a given
number of training speakers. Each new copy of de-
graded data is drawn randomly from the degradation
types using a different random seed to result in broader
coverage of degradation type per original audio file in
training. Results are given in Figure 4.

The plot shows that when using only raw data in
DNN training, the number of training speakers has a
dramatic impact on performance, with performance im-
proving 33% when going from 1000 to 3296 speakers.
Adding four copies of degraded data (one from each of
codec, reverb, noise and music) provides a significant
improvement of 32-34% in average EER across the 11
datasets irrespective of the number of speakers in train-
ing. As the the amount of degraded data increases (x2-

x4), however, the benefit to 1000 speakers can be ob-
served to be more apparent than the full speaker set.
For instance, moving from 4-fold degradation (x1) to 16-
fold (x4), improves the performance 18% relative com-
pared to 10% with the full speaker set. Interestingly,
after adding 16 copies of degraded data to the raw data,
the downward trend in EER has not ceased.

One consideration here is that the number of epochs
is fixed at three in the Kaldi recipe, and the addition of
more and more degraded data could in fact be analo-
gous to additional epochs in training (although not en-
tirely, as the extra data provides additional phonetic cov-
erage). To validate that new data was the key contributor
and not iterations over a smaller data set, we continued
training of the 3296-speaker Raw + CMNlowRx1 DNN
in multiples of three epochs. Starting at 4.23%, moving
to six epochs reduced the average EER to 4.04%, how-
ever additional epochs failed to improve the network any
further. This is in contrast to adding CMNlowRx3 to the
raw data, resulting in 3.95%. This trends suggests that
increasing the epochs to six and maintaining the use
of additional degraded data should allow the network to
leverage both methods of improvement.

From the results in Figure 4, we can observe that the
degradation from using 2000 speakers instead of 3296
ranges between 9–13%, while reducing to 1000 speak-
ers increases this difference to 24–31%. In conclusion,
using at least 2000 speakers and sufficient copies of de-
graded data appears to provide a reasonable speaker
embeddings network.

6. MINIBATCH SIZE

It was mentioned in [5] that the GPU memory limited
the balance between minibatch size and the maximum
number of frames in a training segment, therefore set-
tling at 2-4 seconds per training segments and a mini-
batch size of 64. We considered this an aspect worthy
of note and therefore analyzed the impact of the choice
of minibatch size for a DNN trained using a dataset con-
sisting of raw + 1 of each degradation. Using a mini-
batch size or 64, 128, and 256 resulted in an average
EER of 4.35%, 4.29% and 4.34%, respectively. While
the variation in performance was limited on the datasets
considered in this work, results on several proprietary
datasets showed a rather consistent improvement when
using a minibatch size of 128 as opposed to 64 or 256.

7. SUGGESTED TRAINING PROTOCOL

Numerous aspects of training a speaker embeddings
network were covered in this study to provide a set of
recommendations for those exploring this exciting new



technology. In summary, a good speaker embeddings
DNN should result by doing the following during train-
ing:

1. Using a low SAD threshold, and applying SAD
from the raw signal to degraded signals

2. Using as many speakers as is feasible, with a min-
imum of 2000 speakers

3. Using a wide variety of degradations, with an SNR
of 5 db or higher

4. Not using pitch or speed perturbations

5. Avoiding high levels of reverberation

6. Using as much artificially degraded training data
as is feasible

7. Using a 128 minibatch size

8. Training the network with three to six epochs

8. VALIDATION OF THE TRAINING PROTOCOL

Finally, we aim to validate the suggested training proto-
col as defined in Section 7. To this end, we leverage
the large training set of approximately 5,000 speakers
defined in the Kaldi recipe, our own MFCCs and SAD,
and compare the “baseline“ protocol from [6] to our sug-
gested “improved“ training protocol. Note that we don’t
target a minimal pair comparison, but rather validation
that the suggested protocol can provide significant im-
provements over the default recipe.

The raw training data consists of 5,238 speakers
from 83,000 audio files. The baseline system increases
this data with 128k segments of a degraded version of
this data sourced from MUSAN degradations. These
degradations include reverb, noise, music and babble
and were applied using the Kaldi toolkit. The default
minibatch size of 64 and three epochs of training were
used. PLDA was learned from SRE’10 data and eval-
uated on the SRE’16 and SITW datasets. Additionally,
to replicate the process in [6], results are reported with
a simple form of domain adaptation (denoted with adp)
by estimating mean-normalization parameters from the
SRE’16 dev and SITW dev sets and applying symmet-
ric score normalization [18]. In this work we perform
domain adaption and score normalization in a dataset-
dependent manner.

The improved system, trained using the suggested
protocol, differs in the following ways:

• The degradation pools for noise, reverb, and mu-
sic were increased by including the degradations
used in this article, the codec type was added,

Table 3: Comparison of baseline and improved train-
ing protocols based on the default Kaldi training recipe.
Metrics reported on SRE’16 and SITW evaluation sets.
Domain-adaptation (subscript ‘adp’) performed using
mean normalization from the SRE’16 and SITW dev
sets.

SITW core SRE’16 Canton.
EER DCF10−2 EER DCF10−2

Baseline 6.59% 0.542 7.99% 0.571
Improved 5.75% 0.469 6.35% 0.482

Baselineadp 6.13% 0.525 6.76% 0.450
Improvedadp5.33% 0.455 5.16% 0.399

and the babble type from Kaldi was removed, as
the noise options in our study already incorporated
real babble conditions.

• The raw data was degraded 16 times (four copies
each for four types of degradation).

• Degradations were applied using the tools used in
this work instead of the Kaldi toolkit1.

• A minibatch size of 128 and six epochs of training
were used.

In addition to EER, we report performance in terms
of the NIST decision cost function (DCF) [19] with a
ptar = 0.01. Results in Table 3 indicate that the sug-
gested embeddings training protocol provides a relative
improvement of 13% for both metrics on SITW, and 21%
in EER and 15% in DCF10−2 for the SRE’16 evalua-
tion set. It can be seen that the simple form of domain-
adaptation and symmetric score normalization further
improves performance to beyond that of a comparable
system in [6] (result 4.4 in Table 2 of [6]).

9. CONCLUSION

In this study, we focused on the data requirements and
sensitivities of a speaker embeddings extractor. The
aspects considered included the impact of speech ac-
tivity detection, speaker bias in DNN training, degrada-
tion types and levels, the amount of training data and
number of speakers, and finally the mini-batch size and
number of epochs used in DNN training. The network
training process showed robustness to SAD threshold

1In contrast to the Kaldi recipe, we add a single noise signal to each
DNN training segment (2-4 seconds) rather than different noises per
second (up to five different noises per training segment). The impact
of this process has not yet been analyzed, but we believe a single
noise sample to sound more naturally occurring.



selection, and had the ability to leverage diverse arti-
ficial degradations with performance continuing to im-
prove after degrading the raw data 16 times using noise
and music at 5 db SNR, compression, and low levels
of reverb. In contrast, sensitivities were demonstrated
regarding high reverberation levels, speaker bias, and
noise levels of 0 db SNR or higher. In conclusion, a sug-
gested training protocol was laid out and validated us-
ing a large DNN training set on both SITW and SRE’16
datasets. Future work will consider network structure,
calibration aspects of speaker embeddings, and incor-
porating meta-information directly in the network.
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