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Abstract

We describe the development of a speech activity detecystes
using an HMM-based segmenter for automatic speech redognit
on individual headset microphones in multispeaker mestiige
look at cross-channel features (energy and correlatioed)as
incorporate into the segmenter for the purpose of addrgssin
rors related to cross-channel phenomena such as crosfalk.
sults demonstrate that these features provide a markeawewr
ment (18% relative) over a baseline system using singlesoéia
features as well as an improvement (8% relative) over owique
solution of separate speech activity detection and crbasitel
analysis. In addition, the simple cross-channel energyfea are
shown to be more robust—and consequently better performing
than the more common correlation-based features.

Index Terms: speech activity detection, multi-channel audio,
crosstalk.

1. Introduction

The segmentation of an audio signal into regions of speedh an
nonspeech is a critical first step in the task of automatiespe
recognition (ASR). This is especially the case within thenco
text of multispeaker meetings with individual headset mitrones
(IHMs). In such meetings, the microphone channels ofteniaion
significant amounts of crosstalk—speech from speakers tithr
the wearer of the headset—which typically generates iioseet-
rors if processed by the recognizer. In addition, breathtbero
contact noise can be present, particularly for inexpegdriead-
set wearers with poor microphone technique, and producsisisi
results. Lapel microphones capture less extraneous maigk,n
but are even more prone to pick up crosstalk speech.
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This research was thus not directed at SAD per se, but at im-
proving the ICSI-SRI meeting recognition system, with tesu
measured in terms of word error rate (WER). Our previous ap-
proach to SAD for IHM recognition was to perform a time-based
intersection of the output from two distinct segmenters:

e A segmenter based on hidden Markov models (HMMs)
similar to that described in [3], but simpler in structurelan
utilizing standard cepstral features

¢ A local-energy detector that generates segments by zero-
thresholding a “crosstalk-compensated” energy-like aign
derived from the energy signals of all channels

The effectiveness of the approach lay in that the intersecti
procedure allowed the main weakness of each segmentegé&ylar
cancel out that of the other: the false alarms arising fromsstalk
in the HMM-based segmenter and those arising from breatenoi
in the local energy detector. Details of the system can beddu
[2].

Though relatively well performing, having the cross-cheinn
analysis be disjoint from the speech activity modeling was b
lieved to be a suboptimal approach. This paper details thelole-
ment of a modified system that addresses this issue by camgbini
the two sources of information through the incorporatioorofss-
channel features in the HMM-based segmenter.

The remainder of the paper is organized as follows. Section
2 details the HMM-based segmenter, and the ASR system with
which we measured segmentation performance is briefly ithestr
in section 3. The cross-channelenergy modeling is detmilSec-
tion 4. We present development experiments in Section ¥asal
tion of the final system in Section 6, and discussion procéeds

These phenomena present a significant challenge becayse thegation 7. Conclusions are given in Section 8.

cannot be addressed using the energy-based methods dVelop

from single-channel speech activity detection (SAD) systeln

such systems speech/nonspeech (S/NS) decisions arditypera
formed according to one or more (possibly adaptive) thrigish@s
in [1], for example). Crosstalk and breath noise, howevitgno
contain a substantial amount of energy, causing the thigisigo
methods to falsely trigger. Recent strong interest in tlegeai-

tion and understanding of multispeaker meetings is demamtest
by initiatives such as the Interactive Multimodal InforimoatMan-

agement (IM2), Augmented Multiparty Interaction (AMI),cthe

NIST Rich Transcription (RT) meeting recognition evaloas.
Recent results in the NIST RT evaluations [2] show that srior
speech activity detection are one of the major sources of érr
recognition from IHM recordings, providing us with the nvaii

tion for the work reported here.

2. HMM-based S/NS Segmenter
2.1. HMM architecture

The S/NS segmenter is derived from an HMM-based speech+ecog
nition system. The system was modified and simplified to con-
sist of only two classes — “speech” (S) and “nonspeech” (NS)
each being represented with a three-state phone moded. eBiag-
sion probabilities are modeled using a multivariate GausMlix-

ture Model with 256 components and diagonal covarianceimatr
ces. Segmentation is carried out by decoding the full IHMneted
waveform. The decoding is potentially performed multipfeds,

with decreasing transition penalty between the two classeas

to generate segments that do not exceed 60 seconds in length.



2.2. Baselinefeatures

The features used in the baseline system consist of 12#r-bfel-
frequency cepstral coefficients (MFCCSs), log-energy, @lasith
their first and second differences. The features are cordputr a
window of 25ms advanced by 20ms and cepstral mean submactio
(CMS) is performed as a waveform-level normalization. Besg
such as these are common to many speech recognition systdms a
therefore provide an advantage over those used in [3]. litiadd

the cepstral features, being largely independent of enprgyide
information unavailable to energy-based systems, whicitdcaid

in distinguishing between local speech and other phenomitha
similar energy levels (such as breaths and coughs).

2.3. Segmenter post-processing

To mitigate the effect of “clipped” segments (i.e., segraé¢iat cut
off initial or final speech) that may be generated by the segene

a post-processing step is performed that pads the segméotion
ends by a fixed amount (40ms). Similarly, a post-processem s
that merges adjacent segments that have small separassrilfan
0.4s) is also performed to “smooth” the segmentation. Sed¢gne
are merged to a maximum of 60s. These time constraints had
been optimized for best recognizer accuracy and a goodaflade
with recognizer runtime (long segments tend to use moredieco
ing time), using our baseline segmentation models. Theg hat
(yet) been reoptimized for the improved segmenter featpres
sented here.

3. ASR System

For ASR we used the meeting recognition system fielded by-ICSI
SRIinthe NIST Spring 2005 Meeting Recognition evaluatim-(
05S), as described in detail in [2]. The recognizer usesipheilt
decoding passes and front ends for cross-adaptation hetube
systems and successive refinement of hypotheses. It usepper
tual linear prediction (PLP) and MFCC acoustic features Jfter
augmented with discriminative phone-posterior featustisated

by multilayer perceptrons. Features are transformed wiitalv
tract length normalization and heteroscedastic linearitisnant
analysis, as well as feature-level constrained maximueiitikod
linear regression (CMLLR). Acoustic models are trained bou
2000 hours of telephone speech data, followed by maximunsa po
teriori (MAP) adaptation to about 100 hours of meeting datse
language model is a 4-gram estimated from a mix of telephone
conversations, meeting transcripts, broadcast, and Web d@ae
system has two versions: one using two decoding passesifix qu
turnaround (the “fast” system), and one using an additisixade-
coding passes for best results (the “full” system).

4. Cross-Channel Modeling

For a given speaker and corresponding channel in the IHMieond
tion, the primary complicating factor for speech activigtekction
is the presence of other speakers. Approaches that usmtion
from the other channels (and thus about the speech activiheo
other speakers) are best suited for this condition. Suclosser
channel approach was incorporated into the previous SA2sys
as mentioned in Section 1, but in a way that kept it separate fr
the speech activity modeling. An alternative method exgaldrere
is the use of cross-channel features that are appendedbasiee
line feature vector. In this way cross-channel phenomeoh as
crosstalk can be better modeled, improving local speedthitsct

modeling and detection. The features examined are givembel

L og-ener gy differences (LEDs) The log-energy difference rep-
resents the log of the ratio of short-time energy between
two channels, and is computed between a given target IHM
channel and each of the non-target channels. As with the
baseline features, the short-time energy is computed over a
window of 25ms with an advance of 20ms. This is a vari-
ation of the feature described in [4] with the simplifying
removal of the sigmoid, because the raw values were con-
sidered more informative.

Normalized log-ener gy differences(NL EDs) In some cases dif-
ferencing of the raw log-energy values may be suboptimal
because of significant differences in microphone gains. To
compensate for this, the normalization scheme described
in [3] was adopted as a step prior to the energy differenc-
ing. This normalization consists of subtracting the min-
imum frame log-energy of a channel from all log-energy
values in the channel. That is, for a chanihal framen

Enorm(n) = Ez(n) - (1)

where F' represents log-energy. This minimum frame log-
energy serves as a noise floor estimate for the channel
and has the advantage of being largely independent of the
amount of speech activity in the channel.

Normalized maximum cross-correlation (NMXC) A more
common cross-channelfeature found in the literature [5, 6]
is one based on short-time cross-correlation maxima be-
tween channels. The correlation between the channels
serves as an indicator of crosstalk. We define the normal-
ized maximum cross-correlation between a target channel
and nontarget channgto be

Emin,i

max, ¢i;(7)

$55(0)

where¢;;(7) represents the cross-correlation at tagnd
¢;5(0) is the nontarget channel autocorrelation for lag 0
(i.e., its short-time energy). Cross-correlation and auto
correlation values are computed over a context window of
25ms using a Hamming window function with an advance
of 20ms.

Ly = @)

A key consideration in using cross-channel features is the p
tentially variable number of channels to be processed setsal
requirement of a fixed feature vector size for the HMM-based
segmenter. The solution adopted for this work was to use or-
der statistics—specifically maximum and minimum—of the-fea
ture values generated on the different channels, as wasldone
Wrigley et al. in [5].

5. Development Experiments

Two development test sets were chosen for initial experistn

evaluate the performance of the cross-channel featuresiled

above, and to determine which methods to include in the fiA®l S
system.

5.1. Resultson AMI development set

The AMI development set consists of meetings contributethby
AMI program for the NIST RT-05S meeting recognition evalua-
tion. These are scenario-based meetings, elicited asildeddn



[7], each involving four participants wearing headset mptrones
or head-mounted lapel microphones.

HMM segmenter, the old intersection segmentation syste ins
[2] and briefly described in Section 1 (denoted by ‘interserc),

Because the meetings all contain the same number of chan-various cross-channel feature systems, and the referegoses-

nels, it is possible to create a feature vector of fixed lengihg
values from all channels, rather than by using the maximuch an
minimum values only. This experiment was performed to deter
mine the effect of the length standardization procedure.

For training of the HMM-based segmenter, the first 10 minutes
from 35 of these meetings were utilized. Testing was peréarm
on 12-minute excerpts from four additional meetings.

Table 1:Performance comparisons for systems using AMI devel-
opment data. Results obtained using “fast” ASR system.

[ System || Del | Subs]| Ins [ WER ]
baseline 174 13.0| 74| 378
base + LEDs (all) 172 | 130 | 45| 34.8
base + LEDs (max & min) || 17.4| 12.8 | 45| 34.7
base + NLEDs (max & min)|| 17.1 | 12.0 | 44 | 335
base + NMXC (all) 172 | 128 | 43| 34.3
base + NMXC (max & min) || 17.4| 12.1 | 45| 34.1
reference 18.3| 10.2 | 3.4 | 32.0

The results for the various systems are given in Table 1.-‘Ref
erence” refers to a segmentation derived from the time miarks
the reference for word error scoring. As these were prelmyin
experiments, the fast version of the ASR system was usedan Fro
these results we see that the systems with cross-channeteall
represent a significant performance improvement from ttee=-ba
line, and that this is largely due to the reduction of ineergrrors.
This suggests that these cross-channel features are indeéd
in distinguishing crosstalk from local speech, as crokssah key
source of insertion errors for the IHM condition.

Also of note is that using max and min feature values yields
performance similar to using all cross-channel values. t€h&a-
tive conclusion is that max and min are good representatie v
ues for the purposes of SAD, although one additional valug wa
omitted. It should also help that the min and max featureosep
a consistent rank ordering on the available cross-charateés.
Unfortunately, no substantial data sets are available sbtiese
effects on a much larger number of channels.

A third observation is that the energy normalization teghiei
produces about a 1% absolute improvement over the unnaexdali
case, thus establishing its effectiveness. In additiesemormal-
ized log-energy difference features appearto be sliglgttebthan
the commonly used cross-correlation based features ferdtiia
set.

5.2. Resultson RT-04Sevaluation set

Having established the effectiveness of the features, vibsesu
guently evaluated the cross-channelfeature systems @itodS
evaluation set, this time using the full ASR system. This$ ses$
consists of 11-minute excerpts of meetings provided froohed
the sources CMU, LDC, ICSI, and NIST. Each site contribuieal t
meetings for a total of eight meetings. The meetings varyyile s
number of participants, and room acoustics, potentialysenting

a greater challenge than the AMI set. For this set the segmnent
was trained using the first 10 minutes from each of 15 NIST meet
ings and 73 ICSI meetings.

tation. Also note that the cross-channelfeatures use oakand
min values because of the variable number of speakers.

Table 2:Performance comparisons for systems using RT-04S eval-
uation data. Results obtained using “full” ASR system.

WER

System ALL [ CMU [ ICSI [ NIST [ IDC
baseline 206 | 331 | 234 200 | 38.7
intersection 279 | 325 | 214 | 202 | 349
base+LEDs || 27.3 | 32.8 | 20.1 | 20.0 | 33.7
base+ NLEDs|| 26.9 | 32.8 | 185 | 19.6 | 34.0
base+ NMXC || 28.1 | 317 | 24.9 | 19.0 | 338
reference 251 | 303 | 18,0 | 17.0 | 319

As with the AMI development set, these results reveal im-
proved performance over the baseline system for the chlosshel
feature systems, further confirming the effectiveness eddtfea-
tures. The cross-channel feature systems also represemt-an
provement over the intersection system, supporting thialirtiy-
pothesisthat the disjoint cross-channelanalysis anccéesgivity
modeling was a suboptimal approach.

A comparison of the normalized cross-correlation and thre no
malized log-energy difference features produces somesiiffiet-
ent observations for this data set. For two of the four sairce
(CMU and NIST), the NMXC features produce substantiallydow
word error rates than the NLED ones. For the ICSI meetings,
however, the WER with NMXC isnuchhigher—about 30% rel-
ative. Further investigation reveals that the contritmifactor for
the higher WER is almost exclusively insertion errors (@©the
NLED features and 9.1 for the NMXC features), which suggasts
poorer handling of crosstalk. This leads to a poorer oveetor-
mance for the NMXC features system (28.1% versus 26.9%) and
indicates that the NLED features tend to be more robust than t
NMXC ones. As a result, the NMXC features were removed from
consideration for the final SAD system.

6. Final System Validation

The NIST RT-05S meeting recognition evaluation was seteate

a test set for performing validation on the finalized systetime—
HMM-based segmenter with the baseline and NLED features. Th
test datais composed of 12-minute excerpts from 10 meefirigs
meetings were contributed by five sites with two meetingssjier
AMI, CMU, ICSI, NIST, and Virginia Tech (VT). Being drawn
from a pool similar to the RT-04S data, these meetings alss po
sess significant variation in style, number of participaatel room
acoustics.

The segmenter was trained using the union of the AMI, ICSI,
and NIST training meetings described earlier (see Sectibaid
5.2). We explored two options to train the segmenter: etthpool
all training data to train a single model, or to train an AMikp
S/INS model for use on AMI test data, and a separate ICSI+NIST
model for use on all other test meetings. Using results oarsg¢p
development data to make the decision, we chose the twoimode
approach for the baseline and intersection methods, arsirtgke-

Table 2 gives results on the RT-04S test set for the baselinepooled-model approach for the new cross-channel features.



Table 3:Performance comparisons for systems using RT-05S eval-

uation data. Results obtained using “full” ASR system.

WER
System ALL [ AMI [ CMU | ICST [ NIST [ VT
baseline 203 | 221 | 233 | 205 458 | 358
intersection 259 | 233 | 233 | 245 | 345 | 236
base + LEDs | 25.6 | 22.0 | 23.5 | 20.9 | 37.3 | 23.8
+SDM || 247 33.0
base + NLEDs|| 23.9 | 21.9 | 23.1 | 20.6 | 30.9 | 22.9
+SDM || 227 25.2
reference 195 19.2 | 199 | 16.8 | 21.4 | 20.6

Table 3 presents recognition performance results for the se
mentation from the two log-energy difference systems (iuenor-
malized and normalized) along with the key contrastive ottes
baseline segmenter, the old intersection system, and finenee
segmentation. With regard to performance of the cross+odlan
features, the same trend can be seen as in the developmerit exp
ments. The cross-channel system with NLEDs gives about@mn 18
relative WER reduction over the baseline and about an 8%wela
reduction over the intersection approach.

way to achieve such improvements might be the inclusiontoéot
cross-channel, as well as single-channel features (s.,[&]).

8. Conclusions

We have detailed the development of a speech activity detect
system using an HMM-based segmenter with single-chanepi (c
stra, log-energy, and derivatives) and cross-channelgtaygy
differences) features. Results show that the inclusiohede sim-
ple cross-channelfeatures yields large reductions in ASRIer-
ror rate performance over both the case of no cross-chanakl a
ysis and that of cross-channel analysis independent othpee
tivity modeling. In addition, the benefit of the simple noilima
ing technique of minimum energy subtraction was demoretrat
Finally, the log-energy difference features were shownxtuitst
greater robustness than the more prevalent cross-carelzased
features. The inclusion of a distant omnidirectional mptrone
in the cross-channelfeature computation allows the siggje of
crosstalk even from speakers without dedicated microphione
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setup. The meeting had a speaker participating via a spatades,
and, consequently, without corresponding IHM channel.ddia
tion, two of the participants were silent during the entireeting.
This led to an inordinate amount of insertion errors triggeby
crosstalk, as reflected in the very high baseline error ratie

NIST column. To better cope with unmiked speakers we experi-

mented with a variant of our algorithm that included a singén-
trally located, omnidirectional distant microphone (SDéfiannel

in the cross-channel feature computation. The intent wathfe
SDM to serve as a stand-in for any speakers without HFhe
corresponding results are given in the table in the rows athtk
SDM”. As can be seen, the SDM approach worked very well for
dealing with the particular situation of the NIST meetingpe-
cially when coupled with the NLED features. The differenee b
tween that system and the reference channel on the NISTngseti
was now comparable to that for the other meeting sources.

7. Discussion

The initial motivation for this work was the improvement bkt
ICSI-SRI ASR system for the IHM condition of the NIST meet-
ing recognition evaluation, specifically the speech atgtidietec-
tion. The results presented here demonstrate that, torhlisvee
made substantial progress. Significant WER reductionsgdbu
18% relative) were achieved using the log-energy diffeeciea-
tures we have described. In the process, the technique s$-cro
channel modeling using these features was validated cBkantiy
notable is the extent to which performance gains can be mgde u
ing such relatively simple features. Along these lines rdigist-
ness of these features (as compared to the cross-cometstzed
features) is also of note.

Last, there still exists a performance gap of about 2-3%-abso

lute between our best automatic system and the referenoeeseg
tation. This suggests the possibility of further improverse One

1Recall again that in the IHM condition, the recognizer is supposed
to recognize speech spoken by speaker without personalpfiones.
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