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ABSTRACT

We describe the development of a speech recognition system f
conversational telephone speech (CTS) that incorporatmsstc
features estimated by multilayer perceptrons (MLPs). Tdoua-

tic features are based on frame-level phone posterior pifities,
obtained by merging two different MLP estimators, one based
PLP-Tandem features, the other based on hidden activaéirs
(HATSs) features. These features had previously been shown t
give significant accuracy improvements for CTS recognititien
used with modest amounts of training data and relativelypkm
recognition architectures. This paper focuses on the etgdls
arising when incorporating these nonstandard featuresaifiall-
scale speech-to-text (STT) system, as used by SRI in th@ a4
DARPA STT evaluations. First, we developed a series of time-
saving techniques for training feature MLPs on 1500 hours of
speech. Second, we investigated which components of a-multi
pass, multi-front-end recognition system are most prdfitabg-
mented with MLP features for best overall performance. Tl fi
system obtained achieved a 2% absolute (10% relative) WER re
duction over a comparable baseline system that did notdeclu
Tandem/HATs MLP features.

1. INTRODUCTION

The goal of this work is to demonstrate that long-term adoust
features estimated discriminatively as phone-level pmstprob-
abilities can be used effectively to lower the error rate aofé-
vocabulary, speech recognition systems, above and beybaosta
of state-of-the-art feature extraction and normalizatearhniques
and in the context of a multipass recognition system usintji-mu
ple model adaptation and system combination steps. Inquevi
work [1, 2, 3, 4] we had shown that posterior features estuhat
by multilayer perceptrons can yield relative word erroruetibns
ranging from 6% to 10%, but using less complex systems and
smaller amounts of training data than would typically beduise

a state-of-the-art system. The challenge for the preserit was
twofold. First, we had to scale up the (computationally exgdee)
feature training to very large training corpora of almosd@@ours

of speech. Second, we had to develop a system architecatre th
preserved (or increased) the sizeable wins seen in smpditamas

in conjunction with an array of other techniques that coud p
tentially diminish the relative gains obtained with our enented
feature stream. In fact, as we will show here, simply addirey t
additional features uniformly to all components of a mfrtiat-
end, multipass recognition system does not yield the bsstts

and a more selective use of the augmented feature streaweis-ad
tageous.

The paper is organized as follows. We first describe the aug-
mented front-end features that form the basis of our work{Se
tion 2), followed by the techniques developed to scale featain-
ing to very large training corpora (Section 3). We then pnése
series of experiments aimed at optimizing the use of theifeat
in the context of the overall recognition system using a maige
amount of training data (Section 4). Finally, we report tssaf
full-scale systems on the Fall 2004 CTS evaluation set {&e5).

2. MLP-BASED FRONT-END FEATURES

We have been developing features based on multilayereeperc
tron (MLP) derived posteriors. MLPs are trained by takingoas
shapshots of the time-frequency plane as input. The MLPepest
ors can later be combined for higher accuracy. We have fduatd t
posteriors from MLPs focusing on information derived froond
time chunks of 500 ms can be effectively combined with pamter
from MLPs focusing on shorter-duration chunks of 200 ms. The
combined posterior goes through further transformatiatuting

log, PCA and truncation in the way described in [3], and imthe
concatenated to the traditional features such as MFCC ort&®LP
form the augmented feature vector, which is passed to a GMM-
HMM based speech recognition system. This approach buiids o
the so-called TANDEM approach first proposed in [5].

For both types of MLPs, the output targets are the 46 phones
used in the SRI CTS recognition system. The MLP focusing on
medium-term information takes 9 consecutive frames of RizR f
tures, as well as their first and second deltas as inputs. \We wi
henceforth denote this as PLP/MLP. To extract long-terrorinf
mation, we use a variant of the Temporal Patterns (TRAPs) MLP
architecture [6, 7] called Hidden Activation TRAPs (HATS) f#].
HATSs consists of two stages of MLPs. The first stage extraus p
netically discriminant information from 500 ms of critichhnd
energies, while the second stage merges this informatidrpent
duces phone posteriors. The phone posteriors from boteragst
are merged on a per-frame basis using a weighted averageg whe
the weights are the inverse entropy of the phone posterionng
from the corresponding system [9].

3. SCALING UP TO MORE TRAINING DATA

For the Fall 2004 Rich Transcription evaluation, a vast amafi
new training data became available in the form of the Fistoar C
pus (about 2000 hours of conversational speech). Up to diig,p



we have been developing and scaling our approach usingagicre
ingly larger subsets of the approximately 400 hours of Switc
board as training data for our nets [1, 2, 3]. In these pubtish
results, we started with gender-dependent nets with 50@Kpa-
rameters trained on 32 hours of speech. We progressivelyleidu
the total number of parameters as well as the amount of tigini
data up to 4 times the original and still found relative imo
ments (4%-9%) when augmenting the standard front-endreatu
For the RT-04 evaluation, we plannedto use a system withniesti
the original amount of data and net parameters. From ouriexpe
ence with scaling this approach to use larger amounts ofatata
well as all the later passes of the SRI recognizer, we weré-con
dent that this approach would continue to help when giveremor
data with which to train. The challenge, however, was howaimt
neural nets on an order of magnitude more data. It was shown in
[10] that an optimal ratio of the total number of trainablegma-
eters in an MLP to the total number of training examples isuabo
1:20. So with more data, we should have larger MLPs. Thus, the
total amount of time for MLP training increases quadraljcaith

the amount of training data. A back-of-the-envelope caitoth

of the amount of training time needed to train our nets on fall o

Fisher and Switchboard data came out to be more than one year.

To shorten training time and yet maintain all the benefits ofen
data and more parameters, we adopted several modifications t
training recipe:

1. We modified the learning schedule for the nets.

2. We rotated the portions of the training data for each epoch
of training.

3. We accelerated the training software by using architeetu
specific libraries.

3.1. Learning schedule modifications

We use an early stopping training schedule for our MLP tregni
that prevents over-fitting. The basic procedure is to staiting
using a relatively large learning rate for each epaattil error re-
duction on an independent cross-validation set drops belixed
threshold. At this point, the learning rate is halved beéaeh sub-
sequent epoch, and the training stops when the error reduct
the cross-validation set drops below that fixed thresholdel\ex-
amining our previous net trainings, we found that there virgé
ficiencies in this approach. First, we noticed that the efoafbre
the change of learning rate (often the 4th epoch) was neger si
nificantly reducing the error rate on the cross-validatien hat
epoch only serves to mark the start of halving the learniteyfiar
the following epochs. Second, we noticed that with moreninaj
data, the total number of epochs needed decreases. Forlexamp

using 1¥ training data and net size, 9 epochs are needed for train-

ing, while 8 epochs are needed for a 2x system that uses 2 gisnes

Table 1. Final CV frame accuracy with different initial learning

rates for 2x MLPs
[ Initial Learning Rate] CV accuracy|

0.016 66.83
0.008 67.78
0.004 67.97
0.002 68.08
0.001 67.69
0.0005 66.98

Table 2. Learning rate schedule and data rotation

Epoch || PLP/MLP | HATs Merger | Data
Number || Learning Learning Used
Rate Rate
1 0.001 0.005 4x
2 0.001 0.005 4x
3 0.001 0.005 4x
4 0.0005 0.00025 8x
5 0.00025 0.000125 8x
6 0.000125| 0.0000625 | 16x

For the 6 epochs for training 16x nets, we use the following
strategy and scheduling: The first 3 epochs are trained 4sing
training data (128 hours per gender) with a higher learnaig,r
followed by 2 epochs of training with 8x training data (2564
per gender) with half of the initial learning rate, furthetléwed
by an epoch of training with 16x data (512 hours per gendeh wi
a quarter of the initial learning rate.

Furthermore, we noticed that the initial learning rate plag
important role in the training, and as we train with more data
smaller initial learning rates gave better results. An eplenof
the relation between the initial learning rate and the frameu-
racy on the cross-validation set (CV accuracy) is shown iera
for a 2x net training with 2x data, where an initial learnitader of
0.002 gives the best CV accuracy. We further determinedgtie o
mal learning rate for 4x net with 4x data to be 0.001. Since se u
4x data for the initial 3 epochs in the 16x net training, weided
to use an initial learning rate of 0.001. With similar tunjrvge
determined the initial learning rate for the HATs mergertodbe
0.0005.

The training schedule for PLP/MLP and HATs merger is sum-
marized in the first three columns in Table 2.

3.2. Data rotation

A modification to our training recipe that we adopted was tbe u
of nonoverlapping subsets of increasing amounts of trgidiata

much training data and 2 times as many parameters, and 7®pochy, qiterent epochs. From our experience, having bettéa dav-

for a 4x system. To train the 16x nets, we also use training set
of incremental size among epochs, where we start from 4m-trai
ing data in the first few epochs and later switched to 16xitngin
data for the last epoch. With this knowledge, we roughlyapar
lated that 6 epochs would be sufficient if we were to train ax*16
system.

10ne complete epoch of training corresponds to having peecksvery
frame of the training.

21x pronounced “one times” corresponds to 32 hours of trgiciata
per gender and 500K trainable weights per gender-dependerdl net

erage gave better results. Usually in MLP training, the sdate
are used in different epochs. When 16x data (512 hours per gen
der) are used for training the 16x nets, only less than hatfief
total available data (1200 hours per gender) are used. Byusi
nonoverlapping data in training, the total amount of usaihing
data can cover 4x + 8x + 16x of data, a major part of the availabl
data from the Fisher and Switchboard Corpus.

Another intuition, suggested by early ICSI experimentdim t
late 1980s, was that early epochs, where the gradient descen
back propagation algorithm made larger steps in parampéeres



required less data to get in the vicinity of a good minimumt, bu
as the steps were getting finer in later epochs, more datadwoul
help the algorithm hone in on a good error minimum. This sahem
was simulated and tested, on smaller-scaled 1x and 2x sysfem
2x net was first trained with 3 epochs with 1x data followed by a
single epoch of training with 2x data. With the 2x data as assgt

of the 1x data in training, the frame accuracy on an indepeinde
cross-validation (CV) set was 65.6%, while in the nonoygslag
case, the CV accuracy improved to 66%.

Since the HATs architecture is trained in two stages whege th
first stage is parallelizable and relatively quick becadsaller

critical band MLPs, we trained these critical band MLPs on
the union of the 4x, 8x, and 16x subsets. The second stagemerg
MLP is trained using the schedule summarized in Table 2.

To make the training set, only the native speakers in thegFish
Corpus are used. They are randomly selected to make the@enov
lapping 4x, 8x, and 16x datasets. Because the transcrigtiality
of the Switchboard Corpus is more reliable, we decided toallse
the Switchboard data in the 16x training set, half of it in e
training set, and a quarter of it in the 4x training set, whitdans
that the actual training sets in different epochs are natttr
nonoverlapping. Still, the total coverage was 750 hourgpeder
for the combined Switchboard/Fisher training of the neuet
works.

3.3. Software upgrades

In addition to modifying the training schedule and emplaydtata
rotation, we took advantage of software upgrades. ChrisaDei
ICSI rewrote sections of our neural net training softwareted
the linear algebra operations were optimized for our coerpart
chitectures. Using the Basic Linear Algebra SubroutindsA(®)
libraries, he compiled a version of our training softwareitiize
the Hyper Threading capabilities of our dual Intel Xeon CPUs
The currenttraining speed with the new software is as higtbae

to 2000 million connection updates per second (MCUPS), 3 to 4
times faster than our old software, where the improvemespéed
comes roughly half from the BLAS libraries and half from Hype
Threading.

3.4. Feature computation overhead

Table 3. Word error rate (WER) on RT-02 males using a one-pass
and rescoring system.

Features WER (bigram) | WER (4gram)
PLP only 35.2 30.5
PLP + Tandem/HATS 32.8 28.4
Relative change -6.8% -6.9%

ovals in the figure). Except for the initial decodings, thews:

tic models are adapted to the output of a previous step fran th
respective other tier using MLLR (cross-adaptation). icaef are
generated initially to speed up subsequent decoding st€ps.
lattices are regenerated once later to improve their acguadter
adapting to the outputs of the first combination step. Thcéat
generation steps use noncrossword (nonCW) triphone madels
decoding from lattices uses crossword (CW) models. The final
output is the result of a three-way system combination of I@FC
nonCW, MFCC-CW, and PLP-CW models. The entire system runs
in under 20 times real time (20xRT). For many scenarios isis-u
ful to use a “fast” subset of the full system consisting ot jugo
decoding steps (the light-shaded boxes in the figure); #isisdys-
tem runs in 3XRT and exercises all the key elements of the full
system except for the confusion network combination.

The baseline system structure is the result of a heuristie op
mization (which took place over several years) that aimstaio
maximal benefit from system combination and cross-adaptati
while staying within the 20xRT runtime constraint imposgdte
DARPA STT evaluation. It was not feasible to redo this typef
timization from scratch using the new MLP features. We tfozee
decided to keep the overall processing structure and iigetst
systems that were obtained by replacing the features (attias
ated acoustic models) in the various decoding steps.

4.2. Data

For purposes of system optimization we used a version of the
system and training data as was available at the time of the Fa
2003 RT evaluation. The corresponding baseline triphonestc
models were trained on about 200 hours per gender, drawn from
the LDC Switchboard and CallHome English corpora. All mod-
els were gender-dependent and trained using the minimumahut

With the increased speed for training, it took 6 weeks on four information (MMI) criterion, on MFCC and PLP features, resp
computers with dual Xeon 2.8G Hz CPUs to train four gender- tively, after processing with cepstral mean and varianaenat
dependent PLP/MLP and HATSs nets. Feature generation speed i ization, vocal tract length normalization (VTLN), heteceslastic
measured as 0.57x real time on a 3.0 GHz CPU. Generating thelinear discriminant analysis (HLDA), and speaker-adagfisature
feature for the entire 2400 hours of Fisher and Switchboaoét t  transformation (SAT, used in all but the first decoding stéfi)e

about 2 weeks at SR, partially because of network bottlesiec language model (LM) was a SuperARV 4-gram [14] trained on
CTS transcripts as well as Broadcast News and convershtieba

data [15], and was kept fixed for all experiments. No Fishea da
was used in training this system.

Since the system design experiments were carried out in par-
allel with the development of large MLP training approacftes
The baseline for our work is the SRI CTS system as used in thescribed in the previous section), we chose the largest MiBi-a
Fall 2003 DARPA Rich Transcription evaluation and laterrred able at the time for these experiments. These MLPs werestitain
for the Fall 2004 evaluation, as depicted in Figure 1. A dedide- on a 120-hour male-speaker subset of the acoustic CTSrigaini
scription of the system can be found in [11]; here we hightligh set. A corresponding female MLP was not available, thus all
key aspects as relevant to the incorporation of MLP featubes experiments were carried out on male-speaker test subBets.
“upper” (in the figure) tier of decoding steps is based on MFCC MLLR purposes, we used a block-diagonal transform matrat th
and voicing features [12]; a parallel “lower” tier of decndisteps adapted the baseline and Tandem/HATs portions of the fea@ar-
uses PLP features [13]. The outputs from these two tiersare ¢ tor independently.
bined twice using word confusion networks (denoted by &dss As a point of reference for subsequent experiments, Table 3

4. SYSTEM ARCHITECTURE AND EXPERIMENTS

4.1. System architecture



3XRT
Oupuf

Fig. 1. SRI CTS recognition system. Rectangles represent degastips. Parallelograms represent decoding output dattic 1-best
hypotheses). Solid arrows denote passing of hypothesadégtation or output. Dashed lines denote generation afuserd lattices for
decoding. Crossed ovals denote confusion network systembioation. The two decoding steps in light gray can be rurnleyrselves to
obtain a “fast” system using about 3xRT runtime.

shows results typical of our earlier work, using a simple-pass
bigram decoding and 4-gram LM rescoring system. The test set
is the male portion of the RT-02 evaluation set (72 conversat
sides). The baseline acoustic model uses PLP, compare&ith

Table 4. Word error rate (WER) on RT-02 males using a two-stage
system with cross-adaptation and lattice decoding. Thestiage
uses MFCC models, and the second stage uses PLP models.

augmented with MLP features. Both before and after LM rescor System WER
ing the relative improvement obtained is 6.8% (or about 2%pab Baseline (no MLP features) 26.9
lute). MLP features in PLP models only 26.2
MLP features in MFCC and PLP mode|s

MLLR hyps only 26.0
4.3. Cross-adaptation and lattice decoding MLLR hyps and lat. generation 257
A first question arising in any multistage system is whethaod-
eling improvement should be applied to all stages or jusfitta The results are shown in Table 4. We observe that there is a
stage. The latter approach is attractive especially if thgrove- substantial benefit to using the best features (MFCC + MLP) in

ment is computationally more costly than the baseline apgto  all decoding passes, both to generate MLLR references and fo

This is the case here, since the Gaussian computation ifilfoug |attice generation. This is somewhat surprising with regarat-

proportional to the size of the feature vector, and our ML&fees tice generation, since the baseline lattices have a loweeamor

add 25 components to the feature vector, a 64% increasefwer t rate of about 4%. It seems that in spite of such a low lattiee er

standard 39-dimensional baseline. ror, search errors do occur in the second decoding pass, sbme
We tested the MLP features in various configurations in the which can be prevented by using the improved features fticéat

fast, two-stage CTS system consisting of MFCC-nonCW decod- generation. Note that even under the best scenario, thalbiver

ing followed by PLP-CW decoding. The two stages interact in provement from MLP features is only 4.5% relative, compaced

two ways: the MFCC step generates MLLR adaptation hypothese 6.9% in a one-stage system. This could be due to the fact that

for the PLP step, and the PLP decoding is constrained bgdsatti  cross-adaptation now occurs between two systems that 40%e

generated in the first step. We investigated the benefit chauag of their feature vectors, which, while reducing each sy&emor

ing the MFCC models with the Tandem/HATs MLP features to rate individually, also makes their errors more correlated

generate MLLR reference transcriptions only, and to gaadat

tices? To highlight the differences in acoustic models we omitted

the final LM N-best rescoring that normally takes place orRh 4.4, Results with full systems

decoding output.
Based on the results reported above, we trained complef®T20x

3Note that the same PLP-based Tandem features were used ugtena CTS systems that use the Tandem/HATs MLP features in allsacou
menting both MFCC and PLP front ends. tic models (MFCC and PLP, CW and nonCW), and compared per-




other stages. Such a system also has the desirable propatty t
MFCC+MLP features are used in the initial and final latticaere
ation stages, thus ensuring the best possible lattice aciest The

Table 5. Word error rate (WER) on RT-02 and RT-03 males using
fast and full CTS systems.

System RT-02 | RT-03 overall results with the revised 20xRT system are showneriaht
3xRT baseline 26.1 | 263 row of Table 5. The absolute WER reduction over the basedine i
3xRT w/MLP features 24.8 | 255 1.0% on RT-03, or 4.1% relative. This structure was then tatbp
20xRT baseline 23.7 | 24.6 for the final evaluation system.

20xXRT w/MLP features 23.0 23.9

40xRT baseline w/MLP features 22.1 | 23.0

20xRT revised w/MLP features| 22.8 23.6 5. EVALUATION SYSTEM RESULTS

5.1. New data and system update
formance to the baseline system using only the standard MFCC
and PLP front ends. For completeness, the same comparison wa
done for the fast (3xRT) versions of the two systems. Since va

lous parameters of the full system (such as the N-best riegcor r{excluded all nonnative speakers from acoustic trainingre@oice
weights) had been tuned on a subset of the RT-02 data we repo overall training time for HMMs, the Fisher training set wadits

results on both DARPA RT-02 and RT-03 evaluation sets (male .

- ! - into two complementary halves so that each half containga da
:\;/):@I;ers only, comprising 72 and 69 conversations si ce from all training conversations. MFCC and PLP models weeath

) . trained on the complementary halves. Early experimenta/stio
The first four rows of Table 5 summarize the results from these

; ] that this incurred only minimal performance degradatioman-
experlm_ents. We see that adding MLP features, when adddid tp a gle model's accuracy (0.2% absolute). The combined systasn w
models in the system, reduces WER by only about 2.8% relative geciively trained on the entire training set, while almioaiving
again showing diminishing returns as the system becomes mor o required training time.
e e e e o e O generalimprovement t h basen (and orcspond

X 7 ingly to the MLP-based system) were as follows. Acoustic aied
(MFCC and PLP-based, respectively) become more similaoths b gy y )

. were trained using the minimum phone error (MPE) criterib®l [
are augmented by the MLP features. Both cross-adaptatién an rather than with MMI. Also, triphone models were clustered u
the confusion-network combination in the full system woblel :

tvely affected by this ch ing a decision-tree-based, top-down procedure, rather $Ri's
negatively aliected by this change. o traditional bottom-up “genone” algorithm. The nonCW mcdiel
To counteract the reduced effect of system combination we the first PLP decoding step were replaced by CW models, giving

consider a new strategy: combining systems with and without sma|| accuracy gain and eliminating one model set to beinettia
MLP features, as well as those based on MFCC and PLP featuresFina”y’ the |anguage model was also updated by incorp{g‘ati

In our present setup, this can be achieved by running botbetse- Fisher transcripts and new web data in trairfing.
line system and the system with MLP features, and carryirtg ou

a final 6-way confusion network combination of all the models

involved (MFCC-nonCW, MFCC-CW, PLP-CW, MFCC+MLP-  5.2. Results and Discussion

nonCW, MFCC+MLP-CW, PLP+MLP-CW). The result is shown
in the fifth row of Table 5: a 0.6% absolute WER reduction over
the all-MLP system, resulting in a 6.5% relative gain overtlse-
line. Note that the relative improvement obtained is quitei-s
lar to that in our initial one-pass system. This suggeststtia
improvements from improved features can carry over to cerpl

For the RT-04F evaluation all models were retrained on theét
of available CTS training data. This included all data usexlip
ously, plus about 2000 hours from the new Fisher collectitde.

Two systems were trained: a baseline using standard MFQ@E (pl
voicing) and PLP features, and a contrast system that us&0dF
augmented with Tandem/HATs MLP features. The MLP features
were trained on 1500 hours of CTS data as described in S&tion
The system with MLP features was also the primary systenefikld
sysems, provided at e syst combnaton sategodied. Yo 1 e T evaaton mactlo miner bug fes) B

in the baseline is properly expar]ded to '“C"_‘de the nevifezs. . versations) and then tested on the RT-04F evaluation szt (&
The drawback of the resulting system is, of course, that it conversations).

no longer runs in 20xRT, thereby exceeding the stipulations
the current DARPA RT evaluations. We therefore proceeded to
look for further revisions to our system architecture thatid ap-
proximate the full benefit of the 6-way system combinatiothimi

Table 6 summarizes all results, split by gender. The overall
relative WER reduction on both test sets is identical, 9.9%%
absolute on the evaluation set). This improvement is cenaiuly
" ? greater than the gains reported in Section 4. The amount ¢¥ ML
a 20xRT recognition framework. Since we know that a 3-way yaining data as a percentage of the total training corpasait
comblnatlor_] can be accommodated in the aIIO\_Ned_ runtime, We ihe same in the evaluation system as in the experimentstegpor
can ask which 3-way subset of the 6-way combination yielés th petore (ahout 60%). However, it could be the case that the MLP
most gain. A search over all 3-out-of-6 combinations shothed is better able to take advantage of the overall increasetin dad
a combination of MFC_C+MLP-nonCW, MFCC+MLP-CW, and 5t therefore the systemincorporating MLP features per$ael-
PLP-CW subsystems yields the lower WER. atively better when given more data. The different scalingloP

Accordingly, we ran a revised complete 20xRT system that and HMM performance as a function of data, in turn, could be ex
used a combination of MFCC+MLP-nonCW, MFCC+MLP-CW  plained by the different scaling of the number of parametés

and PLP-CW models in its final stage. As shown in Figure 1,

this corresponds to a system that uses MLP features in all its  4The LM was a standard backoff 4-gram LM, rather than a SupgrAR
MFCC-based decoding stages, and unmodified PLP featurdls in a 4-gram as in preliminary experiments.




Table 6. Word error rate (WER) on RT-04F development and evaluatiis.

RT-04F Dev RT-04F Eval
System Male | Female| All Male | Female| All
Baseline 18.1 16.2 17.2 20.2 20.4 20.3
Baseline w/MLP features 16.8 14.2 15.5 19.0 17.7 18.3
Relative change -7.2% | -12.3% | -9.9% || -5.9% | -13.2% | -9.9%

Table 7. Relative WER changes (in %) with MLP features, broken

down by gender and processing stage.

RT-04F Dev RT-04F Eval
System Male | Female|| Male | Female
Bigram decode -85 -10.9 -10.0 | -11.9
4-gram rescore -8.8 -13.5 -8.1 -13.7
MLLR (cross-adaptation) | -5.4 -10.0 -5.3 -10.3
Final system combinations -7.2 -12.3 -5.9 -13.2

described in Section 3, the number of MLP parameters was in-
creased linearly with the amount of data. For the HMMs such a

scaling would not have been practical given memory and mmti

limitations; the number of HMM and Gaussian parameters was

kept roughly constant.

A more puzzling observation concerns the relative gains
achieved by the MLP features on male versus on female speak- [

ers: The relative WER reductions are about twice as big foele

speakers as for males. To help us understand this phenomenon

tabulated the relative gains from MLP features at varioustpdn

diversity for the purposes of system combination.
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