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ABSTRACT 

 
Constrained cepstral systems, which select frames to match various 
linguistic “constraints” in enrollment and test, have shown 
significant improvements for speaker verification performance. 
Past work, however, relied on word recognition, making the 
approach language dependent (LD). We develop language-
independent (LI) versions of constraints and compare results to 
parallel LD versions for English data on the NIST 2008 interview 
task.  Results indicate that (1) LI versions show surprisingly little 
degradation from associated LD versions, (2) some LI constraints  
outperform their LD counterparts, (3) useful constraint types 
include phonetic, syllable position, prosodic, and speaking-rate 
regions, (4) benefits generally hold for different train/test lengths, 
and (5) constraints provide particular benefit in reducing false 
alarms.  Overall, we conclude that constrained cepstral modeling 
can benefit speaker recognition without the need for language-
dependent automatic speech recognition. 

Index Terms—language-independent phone recognition, 
cepstral constraints, speaker verification. 

 
1. INTRODUCTION 

 
Most approaches to speaker recognition use Mel frequency cepstral 
coefficients (MFCCs) extracted from all regions in a signal that are 
deemed to contain speech.   Recent work on constrained cepstral 
systems has shown that significant improvements in performance 
can be obtained by creating specialized speaker models that use the 
same MFCC features, while restricting the modeled frames to only 
those that match a particular, linguistically motivated “constraint”. 
In our prior work [1], such constraints have corresponded to a 
specific phone, syllable position, or location with respect to pauses.  
The constrained systems can then be combined at the score level 
with a baseline system and/or with each other.    Despite “reusing” 
the same features as the all-frames baseline system and other 
constrained systems, gains from combination can be substantial, 
demonstrating the value of matching cepstral vectors according to 
their linguistic context in enrollment and test data. 
 
Several previous studies have investigated constraining or selecting 
cepstral frames to enhance speaker modeling; the most successful 
ones have used word or phone information, thereby reducing 
variability associated with phonetic content. For example, the 
approaches in [2] and [3] condition a cepstral Gaussian mixture 
model (GMM) on the identities of frequent words or syllables, 
respectively. The methods described in [4] and [5] assign frames to 
broad phone classes in order to score them with class-dependent 
GMMs. 

 
Our constrained cepstral modeling approach differs from these 
earlier approaches in several key aspects. Our goal is not to 
partition all frames of speech.  On the contrary, the idea is to focus 
the modeling on only those regions that yield highly consistent or 
distinctive (for the speaker) features. Similarly, in this approach 
constraints are not orthogonal; the same frame can be used as a 
member of different constraints that are either partially overlapped 
or nested with respect to the speech regions covered. In addition, 
our frame selection criteria go beyond phone and word information 
to include prosodic and speaking rate phenomena.  
 
To support such detailed linguistic modeling, our previous work 
[1] relied on word recognition, making it language dependent (LD) 
and therefore of restricted value for some applications.  In this 
work we develop language-independent (LI) versions of 
constraints using multilingual phone recognition and automatic 
syllabification, and compare results to the LD versions for English 
data. We also move from eigenchannel-only compensation in prior 
work to an updated framework based on joint factor analysis 
(JFA). Finally, we evaluate the method using the most recent NIST 
speaker recognition evaluation (SRE) cost metric, which focuses 
on an operating point with very few false alarms.  

 
 

2. METHOD 
 
2.1. Constrained Cepstral Modeling 
The constrained cepstral speaker modeling approach is illustrated 
in Figure 1.   The signal is converted to a stream of MFCC cepstral 
frames, as usual, followed by a selection of frame subsets based on 
 

 

Figure 1: Schematic representation of the approach. 



linguistic criteria (explained in more detail below).  Currently, our 
constraint systems are combined at the score level.  Each constraint 
is associated with its own GMM-UBM (universal background 
model), yielding a verification score.  The scores are combined 
with a baseline GMM that uses all frames, and/or with each other, 
in general using linear logistic regression.  In the present study, 
given the lack of a suitable training set, we combine each 
constraint separately with the baseline score, using equal weights. 
 
All constrained systems, as well as the baseline system, use the 
same front end, based on MFCCs from 24 Mel filters covering 
300-3300 Hz. Twenty coefficients were computed (C0-C19). 
Based on these 20 values the first- and second-order derivatives are 
calculated, resulting in a 60-dimensional feature vector. This 
feature vector is mean and variance normalized over the session. 
 
Within-speaker and across-speaker variability was modeled in the 
JFA framework [6].  The background model consisted of 1024 
Gaussians; 300 eigenchannels and 600 eigenspeakers were 
included in the model (in [1] we had performed only eigenchannel-
based modeling).   As an expedient, these three model components 
were estimated for the baseline system, on all speech frames, and 
then reused for all constrained models. (Prior work [1] found that 
constrained models or their combination may work better if UBM 
and JFA matrices are trained for each constraint separately, but in 
the current effort this was not fully explored.)  All model scores are 
normalized with ZT-norm. 
 
2.2. Word Recognition 
Language-dependent constraints were based on the output of a fast 
and simplified version of SRI’s conversational telephone speech 
recognition system, limited to two decoding and various rescoring 
passes [7]. The word error rate (WER) on native and nonnative 
speakers on transcribed parts of the Mixer corpus was 23.0% and 
36.1%, respectively. On SRE 2006 microphone sessions we 
measured a WER of 28.8%. 
 
2.3. Multilingual Phone Recognition 
Language-independent constraints that made use of phonetic or 
syllable information were extracted based on the output of a 
multilingual phone recognizer. We used a set of 52 phones that 
give a reasonable representation of four fairly diverse languages 
(American English, Mandarin, Spanish, and Egyptian Arabic), 
while glossing over fine-grained distinctions in the language-
specific phone sets (such as tone in Mandarin). Training data 
comprised about 232 hours of American English (about equal parts 
native and nonnative speakers), 103 hours of Mandarin, 19 hours 
of Spanish, and 17 hours of Egyptian Colloquial Arabic, all from 
conversational telephone speech corpora. A phone trigram served 
as the phonotactic language model. The phone recognition error 
rate on English data was roughly 32% for native speakers and 
about 40% for nonnative speakers.  Note that it is useful for the 
phone recognizer to have substantial error rates since our goal is to 
understand loss associated with errorful phone-based recognition 
on speaker recognition performance. 
 

 
2.4. Language-independent Syllabification 
Since many constraints found to be useful as LD versions in prior 
work [1] make use of syllable information, we needed a 
syllabification approach that did not rely on word unit information.   
To compare results directly between LI and LD versions in this 

study, we developed an automatic approach based only on phone 
(not word) information, which was applied both to phones from 
word recognition (for LD versions) and to phones from 
multilingual phone recognition (for LI versions).  The automatic 
syllabification uses the maximum onset principle with a list of 
possible nuclei.  Because syllabification intentionally does not 
reference word or phonotactic information, possible nuclei are 
restricted to sounds used most often as nuclei rather than onsets or 
codas. Syllables without vowels in dictionary pronunciations (e.g., 
words such as “hm”, which contain a syllabic nasal or resonant) 
are therefore sacrificed.  The maximum onset approach also groups 
long strings of consonants in the LI versions into a single 
(unpronounceable) onset, and generally produces minimal coda 
material compared with canonical word-level pronunciations.  
 
2.5. Constraints 
We explored a large number of different constraints based on 
regions defined by phones, phone groups, syllable position, pause 
context, pitch and energy-based regions, speaking rate regions, and 
regions defined by more than one of these factors.  Due to space 
limitations, we focus here on only a subset of ten constraints, 
chosen to represent a range of different feature types.  Within each 
feature type we have chosen fairly well performing constraints 
based on the results from the LD approach.  
 
Phone-based features are represented here by three constraints: low 
vowels, non-low front vowels, and non-low back vowels.  Two 
constraints refer to specific phones, but extract frames from all 
syllables containing a specific phone in any part of the syllable.  
These include syllables containing a nasal phone ([m], [ng], or 
[n]), and syllables containing an [r] or [l]. Syllable position is 
represented here by two constraints: syllable nuclei and syllable 
onsets. (We note that syllable codas here perform rather weakly 
relative to their performance in [1], as a consequence of the 
maximum-onset-based syllabification described earlier, which 
reduces the content available in coda position.)  For pause context 
we include a single constraint: automatically derived syllables that 
directly precede a pause of at least 60 milliseconds.  We include a 
pitch feature: frames associated with a positive pitch slope, after a 
regularization and fitting of pitch to straight-line approximations, 
and a speaking rate feature, corresponding to regions of slower 
speech for that particular talker, given both the talker’s speaking 
rate and the inherent durations of different phones.   
 
2.6. Data 
Since LD constraints had worked particularly well on the interview 
portion of the SRE08 evaluation data (in part due to the availability 
of longer sessions), we focused our study of LI constraints on that 
condition.  A set of 82 interview speakers was held out from the 
NIST SRE08 (original and follow-up) data for training purposes, 
and a test set was created using the remaining SRE08 data.  
 
For each original condition from SRE08 an extended set was 
created by pairing every available model against every available 
test sample (except when the model and the test sample used data 
from the same original recording session). No additional models 
were created and only samples originally used for testing were 
used for testing in the extended set. The test sets thus created 
contained both short (3-minute) and long (8-minute) speech 
samples (the length on long sessions was limited to 8 minutes to 
match the SRE10 evaluation condition).  Trial counts are given in 
Table 1. 



Table 1: Evaluation trials by condition. 

Train-test 
condition 

Target 
trials 

Impostor 
trials 

Total 

Short-short 33743 1108882 1142625 
Short-long 10234 336437 346671 
Long-short 32248 1054592 1086840 
Long-long 9774 319956 329730 

 
The background GMM was trained on SRE04 data. The 
eigenchannel matrix was trained on SRE04 and SRE05 altmic data; 
eigenspeaker training additionally included telephone data from 
SRE05 and Switchboard.  Score normalization made use of 
SRE04, SRE05, and SRE06 telephone and altmic data. 
 
 

3. RESULTS 
 
3.1. Constraint Sparseness and LD/LI Overlap  
A first set of results helpful in interpreting the performance of 
different constraints with respect to each other and with respect to 
comparing LD and LI versions is shown in Table 2. For each 
constraint we list the percentage of segmented frames (after 
nonspeech removal) matching the constraint, for both LD and LI 
versions, as well as the overlap in actual frames selected between 
the LD and LI versions. Because LI versions sometimes 
outperform LD versions for speaker verification (see Figure 3 and 
discussion), we compute the frame overlap percentage relative to 
both LD and LI frames.  

Table 2: Frame percentages selected and overlaps between LD and 
LI constraint regions 

Constraint LD % 
frames 

LI % 
frames 

LI/LD 
overlap

LD/LI 
overlap

Low vowel 32.9 28.2 55.4 64.5 
Non-low front vowel   8.9 10.4 52.6 40.6 
Non-low back vowel   4.3 10.3 55.9 23.5 
Syllable with nasal 15.7 16.2 52.6 39.8 
Syllable with r or l 13.2 11.7 47.3 53.4 
Syllable nucleus 30.3 35.0 71.5 61.8 
Syllable onset 21.2 21.9 58.8 58.0 
Prepause syllable 23.2 26.6 64.5 56.4 
Frame in pitch rise 17.8 18.5 83.6 79.5 
Slower speaking rate 17.2 19.5 57.8 51.2 

 
 

3.2. Verification Performance in Long-Long Condition 
Figure 2 shows results for LD versus LI versions of the same 
constraint.   Results are for the condition using long data in both 
training and testing. Constraints are shown on the x-axis, ordered 
by the relative performance gain in LD results.  The y-axis is the 
relative performance gain from combination of the constraint with 
the baseline – the difference between the combined performance 
and the baseline alone, divided by the performance of the baseline 
alone. Thus, higher values indicate better constraints in terms of 
complementary information to the all-frames baseline.  The metric 
being compared is the NIST decision cost function (DCF) in both 
the old version (oDCF; false alarms are 10 times more costly than 
false rejections) and the new SRE10 version (nDCF; false alarms 
are 1000 times more costly than false rejections). 
 
A first observation is that even though constraint systems “reuse” 
the same cepstral features as used in the baseline system, they 

provide considerable gains (as high as over 20%) in combination.  
This is rather impressive given the sparse frame counts for some 
constraints as shown in Table 2.   A second surprising finding is 
that despite the low rate of overlap between LD and LI frames 
shown in Table 2, overall, LI versions show rather minimal 
degradation with respect to LD versions.  There are two 
exceptions: syllables with nasals, and syllables with [r] or [l].  In a 
few cases, the LI versions seem to outperform the LD versions: for 
the nucleus constraint, and for the slower speaking rate constraint.  
But generally speaking, these results suggest that there is not much 
loss for most constraints when moving from LD to LI phone and 
syllable extraction, and that this finding seems to hold across a 
range of different constraint types (phonetic, syllabic, prosodic).  
The same pattern of minimal loss from LD to LI performance 
holds for a number of other constraints not shown in Figure 2. 

Figure 2: Comparison of LD and LI versions of selected 
constraints, for relative nDCF reduction from combination of 
constraint with baseline over baseline alone (long-long condition).   
 
Next, we compare relative improvements from constrained 
modeling according to oDCF versus nDCF, which penalizes false 
alarms more severely.  Figure 3 plots the two metrics against each 
other, for both LD and LI constraints. 
 

 
Figure 3: Relative improvement ((base-(base+constraint))/base) 
for oDCF versus nDCF, for LD and LI constraints (long-long 
condition).  The dashed line indicates y=x. 
 
As shown, the improvement from constraint combination, relative 
to the result for the baseline system alone, is consistently greater 
for the nDCF than the oDCF metric, indicating that the constrained 
modeling is particularly good at reducing false alarms. The 



interpretation is that adding more linguistic detail to the speaker 
model makes it less likely to be falsely matched, even by speakers 
with similar all-frames-based cepstral feature models.   
 
3.3. Verification Performance by Train/Test Length 
Because many of our constraints are fairly sparse, we were also 
interested in the effect of train and test sample length. Results by 
length are shown for four different constraint types in Figure 4. 
Nasal syllables, as seen earlier, suffer for LI versions, but this 
seems to be no worse for short train or test samples than for the 
long-long condition. Prepause syllables and pitch rises both 
showed fairly consistent small degradations from LD to LI 
versions across length conditions. For the nucleus constraint, long 
samples in training show a slight edge for the LI versions, while 
short samples in training show a slight benefit for LD versions.   
Further work is needed to understand these relationships. Overall 
however, it appears that the difference in gains between LD and LI 
constraints in the long-long condition is not greatly changed when 
moving to conditions involving short train and/or test samples.  
 
 

 

Figure 4: Comparison of LD and LI constraints, for relative nDCF 
reduction from combination of constraint with baseline over 
baseline alone, by train (first L or S) and test (second L or S) 
length.  L=long S=short. 

 
4.  DISCUSSION AND CONCLUSIONS 

 
Our goal was to investigate whether cepstral constraints originally 
developed based on language-dependent (English) word 
recognition could be replaced by corresponding constraints derived 
from language-independent phone recognition and automatic 
syllabification. Despite considerable differences in constraint 
region alignments between LD and LI versions, with few 
exceptions the LI versions of most constraints showed surprisingly 
little degradation from their LD counterparts in relative 
performance gain when fused with a baseline system on the NIST 
SRE08 interview task. This result held over a range of different 
constraint types (phonetic, syllable-based, pause-context-based, 
prosodic, speaking-rate-based).  In some cases, such as syllable 
nuclei, the LI version outperformed the LD version, suggesting that 
the LI versions may avoid a contaminating effect from the 
language model or dictionary pronunciations that impact regions 
extracted using word recognition.  While the minimal degradation 
held best for longer samples in both train and test, LI still held up 
well when train and/or test lengths were decreased, although the 

degree of this effect seems to be dependent on the constraint.  A 
comparison of performance over different cost metrics revealed 
that constraints (both LD and LI) tend to perform well at low false 
alarm regions; this may be because they provide greater linguistic 
detail, making it more difficult for an impostor to match a target 
speaker.  Overall these findings suggest that constrained cepstral 
modeling can benefit speaker recognition without the need for LD 
automatic speech recognition, thus opening up the possibility of LI 
speaker modeling with linguistic constraints. 
 

The current study examined only English data, in order to compare 
directly between LD and LI constraints on a current NIST task.  An 
important next step is to repeat the study for additional languages, 
and to compare the pattern of LI constraint robustness across 
languages.  Another important goal for future work is to investigate 
constraint utility when constraints are combined with each other – 
rather than with only a baseline system.  This was not currently 
feasible due to a lack of sufficient held-out data to train a 
constraint combiner. We also seek to better understand the 
relationship between constraint performance, constraint sparseness, 
and the overlap between LD and LI versions.  In general, sparser 
constraints should lead to longer-term benefit in combination since 
given that all systems use the same features, sparser systems will 
by definition be less correlated with the all-frames baseline and 
with other constraints.  On the other hand, sparse constraints may 
be less robust to extraction, especially for LI versions.  Finally, we 
aim to better predict and explain which constraints show better 
performance for LI than for LD versions, since such knowledge 
could benefit not only LI performance, but performance when 
word recognition is available as well.  
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