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ABSTRACT

Statistics of frame-level pitch have recently been usedeaker
recognition systems with good results [1, 2, 3]. Althougépticon-
vey useful long-term information about a speaker’s diatidn of
fo values, such statistics fail to capture information abooéal dy-
namics in intonation that characterize an individual'saqeg style.
In this work, we take a first step toward capturing such siggas
mental patterns for automatic speaker verification. Spedifi, we
model the speaker'dp movements by fitting a piecewise linear
model to thefp track to obtain a stylizedg contour. Parameters
of the model are then used as statistical features for speak#-
cation. We report results on 1998 NIST speaker verificati@iua-
tion. Prosody modeling improves the verification perforoenf a
cepstrum-based Gaussian mixture model system (as medsuaed
task-specific Bayes risk) by 10%.

1. INTRODUCTION

Statistics of frame-level pitch have recently been showimfarove
the performance of state-of-the-art speaker recognitjstems [1,
2, 3]. While conveying useful long-term information aboseeak-
er’s fg distribution, such statistics fail to capture informatiaimout
local variations in intonation that constitute an indivadla speak-
ing style (see Figure 1). Prosody is inherently suprase¢mhand
to make full use of intonation and/or duration informatitempo-
ral dependencies must be modeled. In this work, we take a
step toward capturing such suprasegmental patterns fometic
speaker verification. A key feature of our approach is thatsea
piecewise linear stylization of the phonefigccontour, obtained via
an automatic algorithm based on the “close-copy” stylimadide-
tailed in [4]. Such models have been shown to generate spleatch
is perceptually equivalent to that produced in actfgatontours,
as verified by listening experiments. The stylization afious to
remove involuntary segmental or microintonation effectsf the
modeling, while retaining the fundamental patterns asgediwith
a speaker’s intended pitch contours.

The system diagram is shown in Figure 2, dividing the task fift
tering, regularization, statistical modeling and verifica steps. In
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Figure 1: Difference in Intonation Style for Two Male Speakers

the filtering stage, raw pitch contours are treated for utagties
of the pitch tracker such as offshoots in the onset and endioéd
segments (note how the offshoot in the onset of the middleeebi
section in Figure 3 is filtered out) and pitch halving/dongliby
median filtering and robust estimation of pitch statistigsablog-
normal tied mixture model [2], respectively. The regulatian of
the pitch contours to extract the intended intonation of @akpr

firlss accomplished by a piecewise-linear stylization algonit After

stylization, features that reflect the statistics of thgaaspeaker’s
habitual pitch movements are extracted from the piecelinger

model. Parametric models are estimated for the featuresisew
in relative entropy computation in verification.

2. Ky CONTOUR STYLIZATION

The central idea of our approach is the regularizatiorfgo€on-
tours to filter out both the noise introduced by the pitchkeaand
microintonation effects that hide the speaker’s intendethpnove-
ments.

Median filtered, halving/doubling removefg contours still con-
tain a lot of local variation. The so-called microintonatiphe-
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nomena are mostly involuntary on the speaker's part andectla
to the incidental segmental context (i.e., phones pres&tig) are Figure 3: fo Stylization by a Piecewise Linear Model
interested in the intended intonation of the speaker @geaking
style). We aim to capture this via stylization & contours by a
piecewise linear model. Our automatic approach to stytinaif fo

contours by piecewise linear models is motivated by IPQisel
copy stylization [4] in which the pitch tracks are modeledibgar

pitch movements and the criterion for parameter estimasigrer-

ceptual indistinguishability upon reconstruction fromyliged pitch 3. FEATURE EXTRACTION AND
tracks. Piecewise linear models, in this context, have lsbewn ' STATISTICAL MODELING

to be perceptually equivalent to refglcontours that contain micro-
intonation, as verified by listening tests.

section. The results reported here are by using the simpésiad.

A newer approach we have developed estimates the exteneai li
sections and introduces nodes as warranted by the localtmess
of the fg contour.

The regularization of the pitch track allows us to model tadistics

of the speaker’s local pitch movements. A movement is chiarac
ized by its starting and endinfg and the rate at which the speaker
realizes the movement. The stylized contours result in @ifiggnt
data reduction and are used to produce the following pieseelivi-
ear model parameters as features:

To obtain the stylized contour, we first pre-process fawalues to
eliminate regions of pitch doubling and halving. This is ieekd
by applying a lognormal tied-mixture fit to the frame-leveich

values [2, 3], and filtering out pitch tracker irregularitieia median
filtering with a neighborhood size of 5. A piecewise lineardab
is then fit to the estimated (log) pitch values in voiced ragi(see
Figure 4). For a voiced section to be modeleddbgegments, the ¢ segment median: Iddo) ~ 2 (1o, 03)
free parqmeters(x!(,yk)ﬁzo, are the copr_dinates (_)f the r?odes that . segmentslopéTSN 9\[(“170'%)
connect linear spline segments. The fitting function is givg

K e segment duratiofiTs—Tg) ~ £ (H2)

g(x) = z (AKX + i) Iy <x<x] 1)
k=1 which are modeled by log-normal, normal, and shifted exptiak
where (ay, by) are the slope and the intercept of the line definedlistributions, respectively. In addition to the three imdtion fea-
by (%, yk). The node parameters are estimated by minimizing theures, we also extract the duration of continuously voiegians,
mean square error (MSE) between the (log) pitch estimatt@n and of pauses, both modeled by shifted exponentials (seed4q:
stylized fit:

1T ¢ voiced segment duratigqiy — 1) ~ £ (Uz)

(XYilkco=arg_min = Z\(fo(t) ~g(t)y’ (@) _

(XYt T & ¢ pause duratio(Ty — T2) ~ £ (L)

We have developed two algorithms for piecewise linear model
fitting, one of which is to form a parameter vector for a givenThe scoring of the test segment against the true speakerliisode
voiced section by putting together the node frame locationislog-  accomplished in a parametric manner. Distributions arenastd
frequency values, and using a general simplex algorithim MBE  for the 2-minute training segment and the 3-s, 10-s or 3Gtintp
as the objective function. In this technique, the numbelodfas per segment. The negative of the relative entropy between tfettand
voiced section is chosen proportional to the duration ofutieed  test parametric distributions is used as the score in vatidio.
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Figure 4: Stylization and Feature Extraction

4. NIST SPEAKER VERIFICATION TASK

We report results on the 1998 NIST Speaker Recognition Bvalu
tion data. The task is verification of 500 speakers (250 maes
females) in 5000 trials with 2 minutes of training data artD3 pr
30 seconds of test data over the telephone. The trainingtoamis
“l-session”, meaning the 2 minutes have come from a singge te
phone call.

The figure of merit for the NIST task is the detection cost fiorc
(DCF):

DCF

CtP(true)P(fr|true)
+CtaP(imposteyP( falimpostes

®)

(i.e., Bayes Risk with priorB(true) = 0.01= 1— P(impostej, and

false rejection and false alarm co€tg = 10,Cs5 = 1). Results are
intra-gender only and pooled across all target and impagteak-
ers.

5. RESULTS

Results show that the addition of the prosodic informatioprioved
the verification performance of a state-of-the-art cepsthased
Gaussian mixture model (GMM) system. We estimated trainin
and testing distributions of the dynamic prosodic featumes com-
bined the divergence between the training and testingalisions
with the likelihood-ratio score of SRI's cepstrum GMM systEs],
generating a verification score that is thresholded to nma&eléci-
sion.
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Figure 5: Detection performance for maleBCF( x 10%)
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Figure6: Detection performance for femaleBCF( x 10%)

of the cepstrum GMM system significantly, by adding supraseg
mental information not captured in short-term spectra. rEfegive
improvement which, in the 3-second testing case is 4.6% af¥d 0
for males and females, respectively, increases to 9.3% &4d in
the 30-second testing case. This is in line with the plaasix-
Bectation that for features related to dynamic variatiarthsasfg
contours, it takes a certain amount of data to begin to rglidis-
tinguish individual speakers. It is possible to offer thedty that
because females in general tend to have more variabilityaim fo
movements than males, even after normalization, we sebdss
fit for females than for males at the shorter test lengthss Tads
to the reasonable expectation that performance for fensilesld

As shown in Tables 1 and 2 (and Figures 5 and 6) below, the adnprove to at least the level for males if longer utterancesaaail-

dition of the dynamic prosodic features improves the penforce

able.



Table 1: Detection performance for maleBCF( x 10%)

System 3-s 10-s  30-s
Cepstrum 786 655 53.8
Cepstrum + prosody 75.0 60.6 48.8
Improvement 46% 7.5% 9.3%

Table 2: Detection performance for femaleBCF( x 10%)

System 3-s 10-s  30-s
Cepstrum 81.3 62.0 545
Cepstrum + prosody 80.7 59.6 50.7
Improvement 0.7% 3.9% 7.0%
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Figure 7: Cepstrum, NLDA and prosody system combinations

movements. The introduced piecewise linear modeling ezal-
tion may provide a suitable framework for modeling more glob
dynamics, such as the temporal order of the splines. To tids e
we have started to experiment with generating language Imode
for pitch movements with vocabularies consisting of movetme
descriptions such as [baseline-to-high-with-high-sjopsl-gram
models are then trained from the intonation transcriptismsh a
vocabulary allows. Another direction is global dynamic ratig

of prosodic events by HMM modeling df contours.

We have recently developed a superior piecewise linedeatidn
algorithm that allocates nodes according to the degreewtitbh a
given segment deviates from linearity, and is thus capadifigiog
long linear segments with few nodes, and introducing modeadn
the presence of faster dynamics. This results in improvéchates
for slope and segment duration and will likely improve periance
overall.
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only the distribution of movements but also the ordering wéts
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