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Abstract

Language modeling for large-vocabulary conversational Arabic speech recognition
is faced with the problem of the complex morphology of Arabic, which increases the
perplexity and out-of-vocabulary rate. This problem is compounded by the enor-
mous dialectal variability and differences between spoken and written language. In
this paper we investigate improvements in Arabic language modeling by developing
various morphology-based language models. We present four different approaches
to morphology-based language modeling, including a novel technique called fac-
tored language models. Experimental results are presented for both rescoring and
first-pass recognition experiments.
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1 Introduction

In the past decade, research on large-vocabulary conversational speech recog-
nition (LVCSR) has been extended from a small number of ’mainstream’ lan-
guages like English, German, and French, to an increasingly wider range of
languages, e.g. Chinese, Turkish, or Serbo-Croatian. It has been shown that
many core speech recognition techniques (such as channel normalization or
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speaker adaptation) are largely language-independent (Schwartz et al., 2004).
However, porting automatic speech recognition (ASR) systems to new lan-
guages may also highlight unsolved modeling problems. One such problem is
posed by complex morphology, i.e. productive word formation processes (in-
flection, derivation, compounding) which create a large number of possible
word forms in a given language. As a result, statistical language modeling be-
comes increasingly difficult, due to high out-of-vocabulary (OOV) rates and
high perplexity.

Arabic is one of the languages that are often described as morphologically com-
plex. In addition, the problem of language modeling for Arabic is compounded
by extreme dialectal variation and significant differences between the spoken
and the written language. In particular, most varieties of Arabic are essen-
tially spoken dialects for which generally accepted written standards do not
exist. This makes it difficult to collect large amounts of text data to improve
language models for conversational Arabic speech. In this paper we describe
a range of morphology-based language models for Arabic that exploit sparse
training data in a more efficient way and offer the potential of data-sharing
across different dialects. All of these models are based on the decomposition of
word forms into smaller morphological components. This includes a standard
linear decomposition into morphs or particles, as used previously in other lan-
guages (e.g. Whittaker (2000)), but also a new type of parallel decomposition
resulting in a so-called factored language model. The latter provides more ro-
bust probability estimates for word n-grams by employing a backoff procedure
which utilizes information from additional word features, such as morpholog-
ical tags. It is thus particularly suited to Arabic and other morphologically
rich languages, but it can also be used as a more general framework for in-
corporating additional information sources into statistical language modeling.
We explore the use of these models in both first-pass recognition and rescor-
ing experiments and report speech recognition results on Egyptian Colloquial
Arabic.

The remainder of this paper is structured as follows: Section 2 describes the
linguistic properties of Arabic and the resulting problems for ASR in greater
detail. Section 3 describes the corpus used for the present study. Section 4 ex-
plains the various morphological modeling approaches. The recognition system
and recognition results obtained by using morphological language models in
rescoring experiments are described in Sections 5 and 6, respectively. Sections
7 and 8 describe results obtained by more advanced modeling techniques, in
particular automatic parameter search in factored language models, and the
use of these models in first-pass recognition. Section 9 provides a discussion
of the results.
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2 Linguistic Properties of Arabic

Arabic is part of the Semitic language family and serves as the official lan-
guage in more than 22 countries. Rather than being a single homogeneous
language, however, it is more properly described as a collection of different di-
alects or varieties. The most widely encountered variety is Modern Standard
Arabic (MSA), which is used for written as well as formal oral communication
(e.g. in news broadcasts, official speeches, etc.) and is understood by educated
speakers throughout the Arabic-speaking world. Everyday informal commu-
nication, by contrast, is carried out in a local dialect. The differences among
local dialects are considerable and affect pronunciation, phonology, vocabu-
lary, morphology, and syntax. Widely differing dialects (e.g. Moroccan Arabic
and the Iraqi dialect) may hinder communication to the extent that speakers
choose to use MSA as a common language. Table 1 lists examples of some
differences between Egyptian Colloquial Arabic (ECA) and MSA.

Change MSA ECA Gloss

/θ/ → /s/,/t/ /θala:θa/ /tala:ta/ �HC�C�K three

/D/ → /z/,/d/ /Dahab/ /dahab/ I. ë 	X gold

/ay/ → /e:/ /s&aif/ /s&e:f/ óJ
� summer

inflections yatakallam(u) yitkallim ÕÎ¾�JK
 ’he speaks’

vocabulary Tawila tarabeeza table

word order VSO SVO

Table 1
Linguistic differences between MSA and ECA.

Only MSA has a universally agreed-upon writing standard; Arabic dialects are
spoken rather than written varieties. If speakers do attempt to write dialectal
speech, the MSA writing system is typically used, which consists of twenty-
eight letters (twenty-five consonants and three long vowels). A distinguishing
feature of this system is that short vowels are not represented by the letters
of the alphabet but by diacritics, short strokes placed either above or below
the preceding consonant. Several other phenomena are marked by diacritics,
such as consonant doubling and word-final adverbial markers. Arabic texts
are usually not fully diacritized, which leads to considerable lexical ambiguity
and, as a consequence, increased language model perplexity. In ASR, this
problem can be circumvented by using grapheme-based acoustic models (Billa
et al., 2002) or automatic diacritization (Kirchhoff and Vergyri, 2004). For
the present study we use a fully transcribed corpus which includes diacritic
information; this problem is therefore not further investigated here.
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PREFIX STEM SUFFIX

ROOT PATTERN

ta s       k          u        n iyna

Fig. 1. Morphological structure for taskuniyna (you (f.sg.) live).

The morphological structure of Arabic open-class words is that of a stem
surrounded by affixes signaling grammatical categories such as person, number
and gender. The stem can further be decomposed into a root (sequence of three
consonants) and a pattern of vowels and, possibly, additional consonants. The
root and the pattern are interspersed according to the possible consonantal
slots specified in the pattern. The root assigns the basic meaning to a word,
e.g. the root d-r-s, indicates the basic meaning of ’study’, k-t-b has the basic
meaning of ’write’, etc. It never occurs on its own but only in combination with
the pattern, whose vowel and consonant slots indicate secondary grammatical
features like voice, tense, or causality. Table 2 lists examples of words derived
from the same root and different patterns. 1 Arabic has approximately 5000
roots, several hundred patterns, and dozens of affixes. Although not all of them
can combine freely, the resulting number of possible word forms is enormous.
In addition, a small number of particles can attach to the beginning of the
word, thus increasing the number of word forms even further. Compared to
MSA, dialectal Arabic exhibits some morphological simplifications, but word
formation is still very complex, as the following analysis demonstrates.

Root KTB Root DRS

kataba - he wrote darasa - he studied

kitaab - book dars - lesson

kutub - books duruus - lesson

’aktubu - I write ’adrusu - I study

maktab - desk, office madrasa - school

maktaba - library mudarris - teacher

kaatib - writer darrasa - he taught

Table 2
Words derived from the roots KTB (’write’) and DRS (’study’). Root consonants
are marked in boldface.

Highly-inflected languages typically exhibit a large number of word types rel-

1 For a more extensive overview of Arabic morphology, see e.g. (Schulz et al., 2000).
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ative to the number of tokens in a given text. Figure 2 shows a comparison of
the vocabulary growth rates (the increase in number of word types vs. number
of word tokens for a given text) for English and ECA, which were calculated in
each case from 100K words of the English and ECA CallHome corpora avail-
able from the Linguistic Data Consortium (LDC). The vocabulary growth rate
of ECA exceeds that of English significantly. Figure 3 shows the vocabulary
growth rates for the stemmed versions of the same texts. The Arabic text was
stemmed by looking up the stem for each word in the CallHome ECA lexi-
con distributed with the corpus; the English text was stemmed by the Porter
stemmer (Porter, 1980). In both cases a reduction in vocabulary growth can

0

2000

4000

6000

8000

10000

12000

14000

0 20000 40000 60000 80000 100000 120000

vo
ca

bu
la

ry
 s

iz
e

# word tokens

Vocabulary growth - full word forms

’English’
’Arabic’

Fig. 2. Vocabulary growth rates for CallHome data in English and ECA.

be observed. In Arabic, however, the reduction is much greater than in En-
glish. This demonstrates that the vocabulary growth rate in Arabic is indeed
primarily caused by the multiplication of word forms through morphologi-
cal affixation. The large number of actual and possible word forms makes it
difficult to robustly estimate statistical languages models: many word combi-
nations are observed only infrequently or not at all, leading to high perplexity
and a large out-of-vocabulary rate. This is a particularly severe problem for
language modeling of Arabic conversational (i.e. dialectal) speech. Since Ara-
bic dialects are essentially spoken languages, very few dialectal resources exist;
the only corpus currently available is the LDC ECA corpus, though further
data collection efforts are under way. It was shown in (Kirchhoff et al., 2002)
that adding MSA data to language model training data for ECA did not im-
prove the ECA language model, due to the considerable differences between
the two varieties. This includes the linguistic differences described above as
well differences in topic structure and style, which are caused by the fact that
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MSA and ECA are used in almost complementary situations. Although some
gain could potentially be obtained from first transforming MSA text to make
it more similar in style to ECA speech, such a technique has not yet been
tested, leaving transcriptions of actual recorded speech as the only available
training data. For this reason it would be desirable to find a way of exploiting
language modeling training data in a more efficient way, i.e. by decomposing
word forms into their morphological components and sharing training data
across words.

3 Data

For the present study we used the LDC CallHome (CH) corpus of Egyptian
Colloquial Arabic. This corpus is a collection of informal phone conversations
between close friends or family members, with one speaker being located in
the U.S. and the other being located in Egypt. The majority of speakers come
from the Cairene dialect region. The corpus consists of the data sets shown in
Table 3. Two different sets of transcriptions are provided: the script form and a
“romanized” form containing the phonetic information absent from the script
form. Two lexicons of around 16K and 61K, respectively, are available for
this corpus. They contain information about the script and romanized form,
the pronunciation, the stem and morphological class of the word, and word
frequency information. The data is characterized by a relatively high degree
of disfluencies (9% of all word tokens), foreign (in particular English) words
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Set # conversations # words # hrs

train 80 146,298 14

dev 20 32,148 3.5

eval96 20 15,584 1.5

eval97 20 17,670 1.8

h5 new 20 16,752 1.8

eval03 10 11,015 1.9

Table 3
LDC ECA CH data sets.

(1.6%), and noise events. Table 3 lists the standard division of the corpus
into subsets. For our recognition experiments we use the combined training,
h5 new and eval96 sets for training, the dev set for development and the eval97
and eval03 sets for evaluation. The rate of out-of-vocabulary words on these
sets is around 5%. It should be noted that while the eval97 set is similar to
the dev set, the eval03 differs from both. In addition to its smaller size and
vocabulary, it contains 30% more word fragments and overlaps much more
with the training set in terms of n-gram coverage – this is explained further
in Sections 4 and 8 below.

4 Morphology-Based Language Models

Standard statistical language models compute the probability of a word se-
quence W = ww, w2, ..., wN as a product of the conditional probabilities of
individual words given their histories. Typically, histories are approximated
by one or two preceding words, resulting in bigrams or trigrams, respectively.
A trigram is expressed as:

p(w1, ..., wN) ≈
N
∏

i=3

p(wi|wi−1, wi−2) (1)

The quality of a language model is usually measured as its perplexity with
respect to an evaluation text. The definition of perplexity is given below for
the trigram case:

PP (w1, ..., wN) = 2
1

N

∑

N

i=3
log(p(wi|wi−1,wi−2)) (2)

Morphology-based language models typically do not compute probabilities
over words but over some decomposed word representation. Various morphology-
based language models have been explored in the past for languages other
than Arabic, e.g. German (Geutner, 1995), Turkish (Çarki et al., 2000), Ko-
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rean Kiecza et al. (1999), Russian (Whittaker, 2000) and Czech (Byrne et al.,
2001). We briefly review these approaches before presenting the different lan-
guage models developed for our task.

4.1 Previous Work

Early approaches to exploiting morphological information in language model
are reported in (El-Bèze and Derouault, 1990; Cerf-Dannon and El-Bèze,
1991), where a class-based model using parts-of-speech and word stems as
classes was described for French. Initial experiments on 115K-word language
modeling task yielded a perplexity reduction from 280 to 239; a word recog-
nition experiment on a 20K-word recognition task showed a word error rate
reduction from 5% to 4.6%. In (Geutner, 1995), language models for German
were constructed by decomposing full word forms into root forms. When using
the resulting roots in the language model, a reduction in trigram perplexity
from 67 to 59 but an decrease in root form accuracy (compared to the word-
based baseline) from 66.2% to 63.5% was observed. In (Kiecza et al., 1999),
word decomposition for Korean ASR was investigated. Elementary syllable
units were combined in a data-driven way to form units intermediate between
syllables and words. The OOV rate was reduced from 41% to less than 1%, syl-
lable accuracy was improved from 63% to 69%, and the relative improvement
in lattice word accuracy of from 75% to 83%, compared to a syllable-based
baseline. However, no improvement was obtained in actual one-best recogni-
tion. In (Çarki et al., 2000) a recognizer for Turkish was built by automatically
decomposing words into morpheme-sized “chunks”. Chunks were then clus-
tered according to their position in the word, and a 4-gram model over chunks
was used as a language model. The chunk units were used both in the acous-
tic component and in the language modeling component. Although the OOV
rate showed a decrease from 15% to 7%, there was an increase in word error
rate from 34.1% to 37%, for a 30K-word recognition task. Whittaker (2000)
developed a so-called particle model which was tested on Russian and English.
This model assumes that a word is unambiguously decomposed into a number
of particles. An n-gram model over particles then computes the probability of
a particle given its history of n − 1 particles, which may span word bound-
aries. Three different ways of decomposing words were compared, including
both knowledge-based and data-driven methods. In all cases, n-gram models
up to an order of n = 6 were used. Perplexity reductions of 5.4% (for English)
and 7.5% (for Russian) were obtained but no ASR results were reported. In
(Byrne et al., 2001) a morphologically-based language model for Czech was
used in a large-vocabulary continuous speech recognition system. Words were
decomposed into stems and affixes, and a morpheme bigram model was used.
No word error rate improvements were obtained compared to the word-based
baseline system. Some rudimentary morphological processing was also applied
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dev eval97 eval03

bigram coverage 48.1% 49.4% 58.6%

bigram ppl 230 227 132

trigram-I coverage 16.9% 17.2% 39.0%

trigram-I ppl 227 222 123

trigram-II coverage 22.8% 23.3% 52.2%

trigram-II ppl 179 156 128

Table 4
Perplexities (ppl) obtained by word-based models and n-gram token coverage rates
on the CH development and evaluation sets. Trigram-I refers to a trigram trained
on data processed with method I; trigram-II is a trigram trained on data processed
by method II.

to Arabic in (Billa et al., 1997). The definite article in ECA, il, which always
attaches to the following noun, was separated from its successor and treated
as a separate word, both for acoustic modeling and for language modeling.
This reduced the vocabulary size by 7% (relative) and the word error rate by
1% (absolute), for a baseline word error rate of 73%.

4.2 Models for Arabic

In order to be able to compare the properties of morphology-based language
models with those of standard word-based models, we first describe the base-
line language models trained for our task. Word-based bigrams and trigrams
were trained on differently pre-processed versions of the training data. Pro-
cessing method I preserves all foreign words, hesitations and fragments as
individual items in the language models since these are also individual en-
tries in the dictionary used for first-pass recognition and lattice generation.
Bigrams and trigrams trained on this representation are used for the genera-
tion of first-pass hypotheses and word lattices generation (see further Section
5). Processing method II conflates all foreign words, hesitations, and frag-
ments in to three broad classes (FOREIGN, FILLER, FRAGMENT). Models
trained on this representation are used at later stages in the recognition sys-
tem (in particular N-best rescoring), where a match with acoustic models is
not required. The perplexities of these models on the CH development and
evaluation sets are shown in Table 4. We also show the percentage of bigram
and trigram tokens covered by the language model and notice that the eval03
set has a higher degree of overlap with the training set, which is responsible
for the lower perplexity.

Morphology-based language models for Arabic can be developed by exploiting
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linguistic knowledge about different word components, i.e. stems, affixes, roots
and patterns. We have investigated four different ways of using this informa-
tion. These include
1. particle models similar to the work of Whittaker (2000) described above;
2. class-based models where classes are defined by morphological components;
3. single-stream models where sequences of stems, morph tags, etc. are con-
sidered individually;
4. a new type of language model called factored language model, which uses
morphological information in a novel backoff procedure.

Affix Function Affix Function

-i 1st sg poss -ni 1st sg dir

-li 1st sg ind -na 1st pl poss/dir/ind

-ik 2nd sg fem poss -lik 2nd sg fem dir/ind

-ak 2nd sg masc poss -lak 2nd sg masc dir/ind

-ha 3rd sg fem poss -l(a)ha 3rd sg fem dir/ind

-hu 3rd sg masc poss -lhu 3rd sg masc dir/ind

-ku(m) 2nd pl poss/dir/ind -hum 3rd pl poss/dir/ind

Il- definite article bi- preposition in

fi- preposition in li- preposition in order to, for

fa- conjunction so, and ka- preposition like

ma- negation particle Ha- future tense particle

Table 5
Affixes used for word decomposition. Sg = singular, pl = plural, poss = possessive,
dir = direct object, ind = indirect object.

4.2.1 Particle model

Since a rudimentary morphological decomposition (i.e. separation of the defi-
nite article il from the following noun) showed promising results in earlier work
on Arabic ASR (Billa et al., 1997), we assumed that a higher degree of de-
composition would be beneficial. Thus, in addition to separating the definite
article from its successor, several other particles and affixes were separated
from their word stems. We used the information in the CH ECA lexicon com-
bined with knowledge of Egyptian Arabic morphology (see e.g. (Abdel-Massih,
1975)) to identify recurrent affixes. Those affixes which were used in the final
decomposition are the possessive and object pronoun suffixes, negation and
future tense markers, and prepositional particles (see Table 5). The following
are examples of decomposed sequences:

(1) Hayibqu yacni Hatibqa il+nAs kullaha
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# unique items 2-gram 3-gram 4-gram

particle model 49,256 227 215 217

Table 6
Number of unique lexical items and perplexities on the CH dev set obtained by
particle-based language models.

⇒ Ha+ yibqu yacni Ha+ tibqa il+ nAs kulla +ha

(2) akallimak yOm il+Hadd fa+ana baqa baHAwil a$raH+lu
⇒ akallim +ak yOm il+ Hadd fa+ ana baqa baHAwil a$raH +lu

Word and particle representations can be converted to each other unambigu-
ously. Table 6 shows the number of unique lexical items obtained by decom-
posing the word-based lexicon into particles. Our baseline lexicon consists of
a combination of the word forms in the two different CH lexicons mentioned
above and contains 54,545 entries.

A language model trained on this representation models statistical regulari-
ties governing sequences of stems and affixes rather than sequences of words.
N-grams up to an order of 4 were trained on this representation. Their per-
plexities were measured as shown in Equation 3 (for trigrams)

PP (w1, ..., wN) = 2−
1

N

∑

M

i=1
log(P (parti|parti−1,parti−2)) (3)

where N is the number of words and M is the number of particles into which
the word stream has been decomposed. Note that the log probability is ac-
cumulated over particles but the normalization factor is still the number of
words, not the number of particles. This is done in order to compensate for the
effect that perplexity tends to be lower for a text containing more individual
units, since the sum of log probabilities is divided by a larger denominator.

N-gram models were trained on text preprocessed according to method II,
using modified Kneser-Ney smoothing with interpolation of higher-order and
lower-order probabilities. The perplexities with respect to the development
set are shown in Table 6. Although we see a significant perplexity increase
compared to the corresponding word-based trigram (see Table 4), the model
may provide complementary information and is therefore used in rescoring
experiments described below in Section 6.

4.2.2 Class-based models

The third type of morphology-based language model is a class-based model
of the type initially described by (Brown et al., 1992) and shown below in
Equation 4. The class c is defined by either the stem, root, pattern, or morph
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stems morphs roots patterns

PP 159.1 275.8 265.6 302.1

Table 7
Perplexities of class-based models on the CH dev set. Classes are defined by stems,
morph tags, roots, and patterns, respectively.

class obtained from the morphological decomposition as described above.

p(wi|wi−1) =
∑

ci,ci−1

p(wi|ci)p(ci|ci−1)p(ci−1|wi−1) (4)

The perplexities associated with the various class-based models are shown in
Table 7.

4.2.3 Stream models

Instead of splitting words into sequences of morphs or particles, words can also
be conceived of as bundles of simultaneous morphological features. For exam-
ple, the word calls could be analyzed as consisting of a stem CALL plus the
morphological feature [noun plural] or [verb 3rd person singular], depending
on the interpretation. The structure of Arabic words is even richer (cf. Sec-
tion 2), suggesting a decomposition into stems, morphological affixes, roots,
and patterns. A sequence of words can thus be represented as a sequence of
word feature vectors; a sequence of individual vector components defines a
feature stream. These individual streams can be used as alternative informa-
tion sources in language modeling. Streams can either be used separately, or
variables in one stream can be predicted from variables in another stream,
thus taking into account cross-stream dependencies. Our approach is to train
standard trigram models for each stream. For instance, given a sequence of
stems s1, ..., sN , the corresponding trigram model is

p(s1, ..., sN) ≈
N
∏

i=3

p(si|si−1, si−2) (5)

In order to obtain multiple morphological streams, words were decomposed
based on information provided in the CH ECA lexicon, which provides the
stem and the morphological class for each word. The latter is defined by a
combination of grammatical features such as part-of-speech, number, gender,
tense, etc. The stem can be further decomposed into the root and the pattern.
Since root and pattern information was not included in the lexicon, we used an
automatic morphological analyzer (Darwish, 2002), which extracts roots from
stems. The pattern was then obtained by subtracting the root provided by the
automatic analyzer from the stem. It should be noted that the analyzer was
developed for Modern Standard Arabic; it therefore does not provide accurate
stem-to-root conversions for all ECA forms, such that both the root and the
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Word Stems Morph Classes Roots Patterns

# types 54,545 37,325 1,360 7,294 4,724

PP 179 125.3 50.0 76.8 52.8

Table 8
Number of unique words and factors in the CH lexicon and perplexities of the
corresponding trigram models on the CH dev set.

pattern information are noisy. 2 This decomposition produces four streams:

S = s1, s2, s3, ..., sN (stems)
R = r1, r2, r3, ..., rN (roots)
P = p1, p2, p3, ..., pN (patterns)
M = m1, m2, m3, ..., mN (morph classes)

An example of a decomposed word is shown below:

Word: akallimak (I talk to you (masc.sg.))
Stem: kallim
Morph: verb+subj-1st-sg+DO-2nd-masc-sg
Root: klm
Pattern: CACCiC

Note that the order of the substrings in the ’Morph’ tags is not required to
match the order of different affixes in the word – the label simply represents
a bag of morphological features. Table 8 lists the number of different types
for both words and morphological components, based on the converted CH
dictionary. Trigram models were built for each of the streams, using Kneser-
Ney smoothing and interpolation of bigram and trigram probabilities. For
language model rescoring, the hypothesized word sequence is mapped to the
corresponding sequences of stems, roots, etc., and each sequence is rescored
with the corresponding trigram. The final language model score for each hy-
pothesis can be computed as a log-linear combination of the different stream
scores. The weights of this combination can be optimized to directly minimize
word error rate, similar to the framework of discriminative model combination
(Beyerlein, 1998). The trigram perplexities for individual streams are listed
in Table 8. These are not directly comparable to the perplexities of language
models predicting words, but they provide an impression of the complexity of
the prediction task within each stream.

2 An exact quantification of the analyzer’s error rate on dialectal data is not possible
due to the lack of hand-annotated reference material.
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Fig. 4. Backoff path in a standard word-based language model.

4.2.4 Factored language models

A novel type of model, termed factored language model (FLM), is used to
explicitly represent interdependencies among the morphological components
of words both across time and within a word, thus generalizing the stream
models described above. We present a brief summary of this approach here;
a more detailed description can be found in (Kirchhoff et al., 2002; Bilmes
and Kirchhoff, 2003). We assume that each word corresponds to a bundle
of k features or factors, such that wi ≡ {f 1

i , f 2
i , . . . , fK

i }. In general, factors
can be any features relevant to the word, e.g. part-of-speech tags, semantic
features, or, as in this case, morphological components. A word sequence of
length N can thus be converted to K parallel sequences of factors, denoted as
f 1:K

1 , f 1:K
2 , ..., f 1:K

N . A statistical trigram model over this representation would
be defined as follows:

p(f 1:K
1 , f 1:K

2 , ..., f 1:K
N ) ≈

N
∏

i=3

p(f 1:K
i |f 1:K

i−1 , f 1:K
i−2 ) (6)

The factored word representation can be exploited during language model
backoff, in order to estimate word n-gram probabilities more robustly. To this
end, we have developed a novel generalized parallel backoff (GBP) procedure.
Standard Katz-style backoff (Katz, 1987) is defined as

pBO(wi|wi−1, wi−2) =











dN(wi,wi−1,wi−2)pML(wi|wi−1, wi−2) if c > τ3

α(wi−1, wi−2)pBO(wi|wi−1) otherwise
(7)

where pML denotes a maximum-likelihood estimate, c denotes the count of
the triple (wi, wi−1, wi−2) in the training data, τ3 is the count threshold above
which the maximum-likelihood estimate is retained, and dN(wi,wi−1,wi−2) is a
discounting factor (generally between 0 and 1) that is applied to the higher-
order distribution. The normalization factor α(wi−1, wi−2) ensures that the
distribution sums to unity. In standard word-based LMs, zero probabilities for
unseen trigrams are often prevented by backing off to the next lower-order
probability distribution, proceeding from a trigram to a bigram to a unigram.
This can be visualized as a backoff path (Figure 4). In a factored representation,
where temporally synchronous as well as temporally successive elements are
present, it is less obvious in which order the conditioning variables should
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Fig. 5. Backoff graph for a factored language model (4-gram).

be dropped. The different possibilities for backing off from a higher-order to
lower-order distribution can be summarized in a backoff graph, exemplified
in Figure 5 for a 4-gram. There are several different ways of choosing among
different paths in this graph:

1. Choose a fixed, predetermined backoff path based on linguistic knowledge,
e.g. always drop syntactic before morphological variables.
2. Choose the path at run-time based on statistical criteria.
3. Choose multiple paths and combine their probability estimates.

Together, the last two options define the generalized parallel backoff method,
which is implemented via a new backoff function (here shown for a 4-gram):

pGBO(f |f1, f2, f3) =











dcpML(f |f1, f2, f3) if c > τ4

α(f1, f2, f3)g(f, f1, f2, f3) otherwise

where c is the count of (f, f1, f2, f3), pML(f |f1, f2, f3) is the maximum like-
lihood distribution, τ4 is the count threshold, and α(f1, f2, f3) is the nor-
malization factor. The function g(f, f1, f2, f3) determines the backoff strat-
egy. In a traditional backoff procedure g(f, f1, f2, f3) equals pBO(f |f1, f2). In
generalized parallel backoff, however, g can be any non-negative function of
f, f1, f2, f3. In our implementation of FLMs we consider several different g

functions, including the mean, weighted mean, product, and maximum of the
smoothed probability distributions over all subsets of the conditioning fac-
tors. In addition to different choices for g, different discounting parameters
can be chosen at different levels in the backoff graph. For instance, at the
topmost node, Kneser-Ney discounting might be chosen whereas at a lower
node Good-Turing might be applied.

Certain aspects of the generalized parallel backoff technique in FLMs are sim-
ilar to related approaches that have used multiple heterogeneous conditioning
variables in discrete conditional probability models. Dupont and Rosenfeld
(1997) developed an approach called lattice-based language modeling where
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sets of conditioning variables are ordered not only with respect to their tem-
poral precedence but also by an inclusion hierarchy defined by increasingly
more fine-grained word classes. Smoothing is done by ’two-dimensional back-
off’, i.e. both the ’vertical’ and the ’horizontal’ backoff possibilities are pur-
sued and combined by linear interpolation. Similar procedures are reported in
(Gildea, 2001; Wang, 2003; Zitouni et al., 2003), which all use multiple classes
and a fixed pre-determined backoff path from more general to more specific
classes. Wang and Harper (2002) use multiple syntactic-semantic features from
an ‘almost-parsing’ model as additional conditioning variables in a statistical
LM, together with a fixed backoff path determined empirically. FLMs are
a generalization of these techniques in that they allow fixed backoff paths,
but also the choice of paths at run-time depending on the particular n-gram
under consideration. Moreover, different methods for combining probability
estimates from multiple backoff paths are available (geometric mean, product,
min, max, etc. in addition to linear interpolation), and different smoothing
techniques can be used at different nodes in the backoff graph.

FLMs were implemented as an extension to the SRILM toolkit (Stolcke, 2002)
and have been released as part of the standard distribution; a more detailed
description of the implementation can be found in (Kirchhoff et al., 2002).
Since their inception at the Johns-Hopkins University Summer Workshop in
2002, FLMs have been used successfully for various language modeling and
speech processing tasks (Bilmes and Kirchhoff, 2003; Parandekar and Kirch-
hoff, 2003; Ji and Bilmes, 2004). For the present task we tested several FLM
structures (different sets of conditioning factors and various backoff paths)
manually to optimize the perplexity on the development set. The best model,
shown in Figure 6, obtained a perplexity of 169, a reduction of 6% relative to
the comparable word trigram (see Table 4).

5 Recognition System

Recognition experiments are carried out with the SRI DECIPHERTMspeaker-
independent continuous speech recognition system. The front-end consists of
52 mel-frequency cepstral coefficients (13 base coefficients plus first, second
and third derivatives), which are subsequently reduced to 39-dimensional fea-
ture vectors by Heteroscedastic Linear Discriminant Analysis (HLDA). Mean
and variance normalization as well as vocal tract length normalization (VTN)
are performed. VTN is applied to speaker clusters that are obtained by clus-
tering the acoustic signals for each conversation side into three clusters on av-
erage. The acoustic models are genonic HMMs (Digalakis and Murveit, 1994)
with approximately 220 genones and 128 Gaussians per genone. Decoding is
performed using a multi-pass recognition strategy (Murveit et al., 1993). In the
first pass (Stage 1), N-best hypotheses are generated using phoneloop-adapted
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W|W−1,W−2,M−1,S−1

W|W−1,S−1,M−1

W|M−1,S−1

W|M−1 W|S−1

W

Fig. 6. FLM bigram for CH ECA. The model attempts to predict the current word
based on the previous two words, the previous morph class and the previous stem.
When this combination is not found, the most distant word is dropped, followed
by the word at the previous time step. When backing off from the combination of
previous morph and stems, both estimates obtained by just using either the previous
morph or the previous stem are computed, and the larger of them is utilized. The
final backoff node is always the word unigram probability.

non-crossword triphone models, a recognition lexicon of 18,352 words, and a
bigram language model. Maximum word posterior hypotheses are obtained
using N-best ROVER, which are then used to train speaker-adaptive training
(SAT) and maximum-likelihood linear regression (MLLR) transforms for each
speaker. These adapted models are then used to produce bigram lattices. The
lattices are rescored with a trigram LM (trigram-I, based on preprocessing
method I as described in Section 4.2) and are used as recognition networks for
the following two recognition passes, one of which uses adapted non-crossword
maximum-mutual-information (MMI) trained acoustic models, the other uses
adapted crossword maximum-likelihood trained models. Each pass generates
a set of N-best hypotheses, which is then rescored with additional language
models (including the word-based trigram II, see Section 4.2) as described be-
low (Stages 2a and 2b). The final hypotheses are obtained by using two-way
N-best ROVER (Stolcke et al., 2000) (Stage 3), i.e. the hypotheses from the
separate N-best lists are combined into one confusion network before rescor-
ing. For language modeling training we used the SRILM language modeling
toolkit (Stolcke, 2002) with FLM extensions as implemented and described in
(Kirchhoff et al., 2002).

The utterance scores used for reranking the N-best hypotheses are a weighted
combination of several component scores. In the baseline system these consist
of the acoustic score, the language model scores from trigram-I and trigram-II,
and the number of words. In our experimental systems, scores from various
morphology-based language models are added. For score combination we use
discriminative score combination framework (Beyerlein, 1998; Ostendorf et al.,
1991). This approach aims at an optimal integration of independent sources
of information in a log-linear model. The parameters to be trained discrimi-

17



natively are the weights of the log-linear combination; these are optimized to
minimize the word error rate on a held-out set. This method has been help-
ful in a variety of score combination tasks (Byrne et al., 2000; Vergyri et al.,
2000; Glotin et al., 2001). For weight optimization we use a simplex downhill
method known as amoeba search (Nelder and Mead, 1965), which is available
as part of the SRILM toolkit.

6 Rescoring Experiments

In our initial experiments we investigated several different combinations of
morphological language models for N-best list rescoring. Preliminary exper-
iments were conducted at the Johns-Hopkins Summer Research Workshop
2002; these are described in (Kirchhoff et al., 2002). Here, those experiments
were repeated and extended using a different baseline system. We had previ-
ously observed that morphological patterns did not contribute any information
and usually received negative weights during weight optimization, possibly
due to the errorful extraction mechanism. The models used in the following
experiments were therefore restricted to either stream or class-based models
for stems, morphs, and roots. In addition, the particle model and the FLM
described in the previous section were used.

In a first step, the effect of different models and model combinations was
investigated using a simpler baseline system than the one presented above
which yielded a baseline word error rate of 56.1% on the development set
during the second stage (only one set of N-best lists was used in this sys-
tem). Table 9 shows the word error rates obtained with different LM combi-
nations after weight optimization and language model rescoring. We observe
that most morphology-based language models improve the word error rate
marginally. Combinations of more than one model usually have a bigger ef-
fect; the largest reduction (0.5% absolute) is obtained by combining stream
models with a class-based model, involving all three morphological compo-
nents (roots, stems, and morph classes). The combination with an FLM did
not yield an improvement on this set despite the improvement in perplexity
observed before. Further analysis revealed that the perplexity obtained by
the FLM on the actual N-best hypotheses (as opposed to the true reference
transcriptions) was higher than that of the word-based n-gram.

We subsequently applied the two best combinations of language models to the
evaluation system described in the previous section. Each of the two sets of N-
best hypotheses was rescored with a different combination of models. The first
system used the class-based models for each of the three factors stem, morph,
and root. The second system used three stream models for same factors. The
recognition results are shown in Table 10. Compared to the baseline results we
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System WER

Baseline 56.1

Baseline + particle model 56.0

Baseline + FLM 56.6

Baseline + added stream/class models

morph stream 55.8

stem stream 56.0

root stream 56.0

morph class 55.9

stem class 55.9

root class 56.0

Baseline + added LM combinations

morph stream, stem stream 56.7

morph stream, root stream 55.8

morph stream, stem stream, root stream 55.7

root stream, stem stream, morph stream, morph class 55.6

root stream, stem stream, morph stream, stem class 55.8

root class, stem class 55.9

morph class, stem class 55.8

morph class, stem class, root class 57.2

stem stream, morph stream, stem class 56.1

Table 9
Word error rates (%) on the CH dev set obtain by various combinations of the
baseline language models with morphology-based language model scores.

see an absolute improvement of 1.3% othe development set and improvements
of 1.0% and 0.6% on the eval97 and eval03 sets, respectively. Although these
improvements are modest, they are consistent across all sets. Moreover, an
analysis of the combination weights showed that consistently high weights
were given to morphology-based models, demonstrating that they contribute
useful information. For instance, the combination of the baseline models with
various class-based morphological models yielded the weights 2.7 (trigram I),
1.2 (trigram II), 2.17 (stem class model), 3.52 (morph class model), and 0.27
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word-based LMs morph-based LMs

Stage dev eval97 eval03 dev eval97 eval03

1 57.3 61.7 46.7 57.3 61.7 46.7

2a 54.8 58.2 40.8 53.4 56.9 39.9

2b 54.3 58.8 41.0 53.0 57.9 39.5

3 53.9 57.6 40.2 52.6 56.6 39.4

Table 10
Word error rates (%) obtained by N-best list rescoring with morphology-based lan-
guage models. The leftmost column refers to the different recognition passes as de-
scribed in Section 5. Word error rates for the first pass are the same for both systems
since the the morphology-based language models are only used during rescoring.

(root class model). 3

Larger improvements might be obtained by using morphological information
in the first recognition pass: better hypotheses obtained at earlier stages in the
recognition system can significantly affect adaptation and lattice generation
at later stages. To this end we need to use a language model that makes
use of morphological information but directly predicts words (rather than
stems, roots, etc.). Of the models presented above, only the FLM meets these
requirements: it predicts words but uses morphological factors during backoff.

We investigated two techniques to enable us to use FLMs for first-pass recogni-
tion. First, the choice of the best set of FLM parameters (i.e. the combination
of conditioning factors, backoff path, and smoothing options) is important
for good performance but is difficult to optimize by hand since the space of
possible parameter combinations is very large. For this reason, we have de-
veloped an automatic optimization technique based on Genetic Algorithms
(GAs), which is described in the following section. This procedure optimizes
the model automatically and, furthermore, seeks to minimize perplexity only
on those words present in the recognition lexicon. Second, first-pass recogni-
tion requires interfacing a standard word-based decoder with a language model
based on a factored word representation. This is described in Section 8.

7 Automatic Parameter Search in Factored Language Models

Three types of parameters define an FLM: the set of initial conditioning fac-
tors, the backoff graph, and the smoothing options. The search space defined
by these parameters is extremely large: Given a factored word representation

3 These are normed weights such that the weight for the acoustic model is 1.

20



with a total of k factors, there are
∑k

n=1

(

k

n

)

= 2k possible subsets of initial
conditioning factors. Further, for a set of m conditioning factors, there are up
to m! backoff paths, each with its own smoothing options. In addition, the
search space is complex: nonlinear interactions between parameters make it
difficult to guide the search into a particular direction. For instance, a partic-
ular backoff path that works well with Kneser-Ney smoothing may perform
poorly when a different smoothing method is chosen. For these reasons, we op-
timize parameters using Genetic Algorithms (Holland, 1975), which typically
perform well on problems with large and poorly understood search spaces.

7.1 Parameter Search Using GAs

GAs work by encoding problem solutions as (mostly binary) strings and by
evolving successive populations of solutions via genetic operators applied to
these strings. Each string can be evaluated by a so-called “fitness function”,
which represents the desired optimization criterion. In each iteration of the
algorithm, a new population with a higher average fitness is created. This is
achieved by applying the genetic operators selection, crossover, and mutation.
The selection operator selects particular strings from the general pool with a
probability proportional to their fitness. Crossover creates new strings by split-
ting existing strings in random positions and recombining their constituent
parts. Mutation randomly replaces bits in existing strings. Both crossover and
mutation are applied with a fixed small probability. In our case, strings de-
scribe individual FLMs, and the fitness function is the perplexity of the FLM
represented by a string. The encoding scheme that defines a mapping between
a string and a particular FLM consists of three subparts representing the
factors, the backoff graph, and the smoothing options, respectively.

Factor Encoding. The initial factors F are encoded as binary strings, with
0 representing the absence and 1 representing the presence of a factor. For
example, a FLM trigram might have three factors (A,B,C) per word. Then the
set of all potential conditioning factors S is: {A−1, B−1, C−1, A−2, B−2, C−2}
where the subscript indicates the time position of each factor. A particular set
of initial factors F is a subset of S and can be represented as a 6 bit binary
string, where 1 at a position indicates the inclusion of that factor in F . The
string 100011, for instance, means that F is: {A−1, B−2, C−2}

Backoff Graph Encoding The backoff graph is encoded by means of graph
grammar rules (similar to Kitano (1990)), since a direct approach encoding
every edge as a bit would result in overly long strings and inefficient GA search.
Grammar rules indicate which factor to drop and capture the graph regularity
that a node with m factors can only back off to children nodes with m − 1
factors. For instance, for m = 3, three rules describe the choices for backing
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off to nodes with m = 2:

RULE 1:{X1, X2, X3} → {X1, X2}
RULE 2:{X1, X2, X3} → {X1, X3}
RULE 3:{X1, X2, X3} → {X2, X3}

Here Xi corresponds to the factor at the ith position in the parent node. Rule
1 indicates a backoff that drops the third factor, Rule 2 drops the second
factor, etc. To describe the backoff from {A−1, B−2, C−2} to {A−1, C−2} we
would indicate that Rule 2 was activated (the second factor was dropped).
To describe a parallel backoff from {A−1, B−2, C−2} to both {A−1, C−2} and
{B−2, C−2} we would indicate that both Rule 2 and Rule 3 are activated.

The choice of rules used to generate the backoff graph is encoded in a binary
string, with 1 indicating the use and 0 indicating the non-use of a rule. The
backoff graph grows according to the rules specified by the gene, as shown
schematically in Figure 7.
Encoding of Smoothing Options. Smoothing options are encoded as tu-

1. {X1, X2,X3} {X1,X2}

{X1}
{X2}{X1,X2}

{X1,X2}

�
�
�
�

�
�
�
�

�
�
�
�

1, X2,X3}
2. {X1, X2,X3}
3. {X {X2,X3}

{X ,X3}1

4.
5.

PRODUCTION RULES:

10110
GENE:

(a)

AB

ABC

AB

ABC

BC AB

ABC

BC

A B
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ABC

BC

A B

0

1

4 4

3

(b)

Fig. 7. Gene activates graph grammar production rules (a); Generation of Backoff
graph by activated rules 1, 3, 4 (b).

ples of integers, each specifying the discounting method (e.g. Kneser-Ney,
Witten-Bell smoothing) and backoff threshold (e.g. τ = {1, 2, 3, . . .}) at a
node in the graph. A gene consists of the concatenation of the three strings
representing the initial factors, the backoff graph, and the smoothing options.
Genetic operators thus optimize all FLM parameters jointly.

7.2 GA Experiments and Parameter Search Results

In our application of GAs to FLM parameter search, the perplexity of models
with respect to the development data was used as an optimization criterion.
The perplexity of the best models found by the GA were compared to the
best models identified by a lengthy manual search procedure using linguistic
knowledge about dependencies between the word factors involved, and to a
random search procedure which evaluated the same number of strings as the
GA.
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Several GA options were investigated to examine the impact on convergence
speed and final result. Empirically, the crossover operator impacts perfor-
mance the most, due to the specific encoding method employed. The differ-
ences among other GA options were less clear, and different options appear
to give equally good results. This robustness of option choices is most likely
due to the inherent robustness of the genetic algorithm. As a rule of thumb,
the following options yielded good results: population size 30-50, crossover
probability 0.9, mutation probability 0.01, Stochastic Universal Sampling as
the selection operator, and 2-point crossover. We also experimented with re-
initializing the GA search with the best model found in previous runs. This
method consistently improved the performance of normal GA search and we
used it as the basis for the results reported below.

n-gram Word Hand Rand GA ∆PP (%)

Development Set

2-gram 230.3 228.4 232.1 223.9 -2.0

3-gram 227.1 226.9 231.7 212.6 -6.3

Evaluation Set (eval97)

2-gram 227.9 226.2 230.5 222.4 -1.7

3-gram 222.3 226.6 228.1 208.4 -6.3

Table 11
Perplexity for word-based LMs and FLMs with parameters optimized using manual,
random, and GA search.

Table 11 compares the best perplexity results for standard word-based models
and for FLMs obtained using manual search (Hand), random search (Rand),
and GA search (GA). The last column shows the relative change in perplexity
for the GA compared to the best of the word, manual or random search models.
Results are shown for the CH dev and eval97 sets. These perplexities are
evaluated without consideration of out-of-vocabulary (OOV) words, since the
speech recognizer has a fixed vocabulary and cannot recognize OOV words. If
this constraint were not used, the GA might attempt to minimize perplexity
on OOV tokens rather than on n-grams known to the decoder.

The results show that GA search yielded the lowest perplexity on both the
development and evaluation set. In general, the best FLMs found by GA
search used all available conditioning factors (word, stem, root, pattern, and
morph class) and parallel backoff with different smoothing options at different
nodes in the backoff graph. A graphical representation of the best bigram
model can be found in the Appendix. The FLMs with the best perplexity
on the development set were used for the first-pass recognition experiments,
described in the following sections.
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8 First-pass recognition with factored language models

Since promising results were obtained by applying morphological knowledge
during rescoring, we expect to gain a further improvement when applying it
at earlier recognition passes. However, the use of FLMs in first-pass recogni-
tion is problematic because standard word-based decoders cannot process the
decomposed word representations required by FLMs. For this reason we use
a novel feature of the SRILM toolkit that allows us to ’rescore’ a word-based
language model with an FLM using the following steps:

(1) The entries in the word-based LM are converted to a factored word rep-
resentation, based on a lexicon.

(2) The factored representations are then passed through the FLM trained
on the decomposed training text and are assigned new probabilities from
this FLM.

(3) After renormalization, the entries are converted back to words and writ-
ten out as a new LM in standard ARPA format for use with a word-based
decoder.

When applied to a development or test set, the rescored word LM typically
yields a higher perplexity than the corresponding FLM. This is because unseen
word n-grams in the new text can be assigned probabilities in the FLM by
backing off to previously encountered factor combinations (e.g. morph class
or stem n-grams); however, if the corresponding word n-grams are not present
in the original word-based LM, they will not be present in the rescored LM.
For this reason, additional word n-grams need to be added prior to rescoring
in order to derive the maximum benefit from the FLM. Adding all possible
bigrams and trigrams is clearly infeasible. We select bigrams which do not
exist in the original training data by searching over all possible bigrams and
retaining those for which

pFLM(w, h)(log(pFLM(w|h)) − log(pword(w|h))) > ǫ

where h is the word history, pFLM is the probability obtained by the original
FLM and pword is the probability obtained by the word LM. This criterion
is derived from previous experiments on language model pruning (cf. Stolcke
et al. (2000)) and approximates the relative entropy between the FLM and
the rescored word-based n-gram model. The value of ǫ was chosen such that
pword would be within 2% of that of the FLM. Since a comparable search over
the entire trigram space is infeasible, the search is conducted only for those
trigrams for which both component word bigrams have already been added
based on the above criterion.

Table 12 compares the perplexities on the dev and eval sets obtained by dif-
ferent language models. The results show that the use of FLMs (line II) leads
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dev eval97 eval03

2-gram 3-gram 2-gram 3-gram 2-gram 3-gram

I 230 227 227 222 132 123

II 223 213 222 209 136 89

III 250 227 249 225 145 141

IV 226 217 225 215 137 137

Table 12
Bigram and trigram perplexities obtained by: the word-based baseline model (I),
the FLM (II), the baseline model rescored with the FLM without adding additional
n-grams (III), and with added n-grams (IV), on the different CH sets.

to perplexity reductions on all sets, with the exception of the bigram on the
eval03 set. The slight increase in bigram perplexity and the significant reduc-
tion in trigram perplexity on eval03 is a combination of the nature of the data
set as well as the smoothed probability estimates provided by the FLM. As ex-
plained in Section 4.2, the eval03 set has a much higher n-gram coverage than
the dev and eval97 sets. For bigrams, the standard word-based model may
therefore already provide reasonable probability estimates, while the highly
smoothed estimates from the FLM (resulting from the combination of a large
number of component models) actually lead to a higher perplexity. In the tri-
gram context, by contrast, the highly smoothed estimates are beneficial and
reduce the perplexity considerably.

The differences between rows II and III/IV demonstrate the loss in perfor-
mance due to the rescoring procedure described above, which prevents us
from exploiting the benefits of FLMs to the full extent. This is particularly
obvious for the trigram applied to the eval03 set. The trigrams that are added
in IV depend on previously added bigrams; however, the FLM bigram model
itself already leads to a worse perplexity than the word-based language model,
which is why not much improvement can be expected in this case.

Table 13 shows the word error rates obtained by applying the rescored lan-
guage models in the first recognition pass in addition to using stream and class-
based models during rescoring. Additional absolute improvements of 0.5% and
0.4% were obtained on the dev and eval97 sets, whereas the eval03 set showed
a 0.2% absolute degradation. The overall improvements compared to a base-
line system that does not make use of morphological information thus are 1.8%
(dev), 1.5% (eval97) and 0.6% (eval03).
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Baseline, N-best lists rescored Rescoring plust 1st pass

word-based LMs with morph-based LMs pass recognition w/ FLM

Stage dev eval97 eval03 dev eval97 eval03 dev eval97 eval03

1 57.3 61.7 46.7 57.3 61.7 46.7 56.2 61.0 46.3

2a 54.8 58.2 40.8 53.4 56.9 39.9 52.7 56.5 40.2

2b 54.3 58.8 41.0 53.0 57.9 39.5 52.3 57.4 40.1

3 53.9 57.6 40.2 52.6 56.6 39.4 52.1 56.1 39.6

Table 13
Word error rates (%) obtained by using approximations of FLMs during the first
recognition pass, in addition to morphological stream and class models during
rescoring.

9 Conclusions

We have presented an overview of different approaches to morphology-based
language modeling for Arabic LVCSR. The models we have developed in-
clude particle-based models, morphological stream models, class-based mod-
els where classes are defined by morphs, and a new type of language model
called factored language model. The latter uses a backoff procedure where both
words and/or additional morphological features can be used in combination.
We tested these models in N-best list rescoring experiments; in addition, lan-
guage models derived from FLMs were used in first-pass recognition. This was
facilitated by the automatic optimization of FLM structure and parameters,
and by a language model approximation procedure which allows probability
estimates from a FLM to replace those in a word-based language model which
can be used with a standard decoder. The combined use of these procedures
led to significant word error rate reductions on one evaluation set and to non-
significant but consistent improvements on the other. A drawback of the FLM
approximation procedure is that not all word combinations which are implic-
itly represented in the FLM can be represented explicitly in the approximating
word-based language model; the search space and memory requirements would
be too large. Future work will focus on improving the interface between de-
coder and FLMs and on alternative approximation methods, e.g. techniques
based on frequent occurrences of morphological factor combinations rather
than word combinations in the training data.

The main objective of this study was to determine the relevance of morphology-
based language models in ASR, i.e. its potential for reducing word error
rate given perfect knowledge of the morphological word structure. However,
the methods presented here also lend themselves to modeling automatically
learned morphological classes, or other factors obtained by data-driven word
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decomposition or clustering. A limited investigation of such data-driven tech-
niques has been reported in (Kirchhoff et al., 2002). We are currently exploring
additional ways of learning factors automatically. Another direction currently
under investigation is the use of the FLM framework for sharing training data
across different languages or different varieties of a language, such as differ-
ent dialects. This should prove particularly useful for a language like Arabic,
where little training data for individual dialects is available.
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APPENDIX

P S R M W P S MW P R M

W P S R M
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SR PM
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Fig. 8. Backoff graph of the Arabic bigram FLM used for rescoring and first-pass
recognition. The characters W, P, S, R, M represent the previous word, pattern,
stem, root, and morphological class factors, respectively. The top node thus stands
for the probability distribution P (Wi|Wi−1, Pi−1, Si−1, Ri−1,Mi−1). At each of the
lower level nodes, one of the conditioning factors is dropped. Multiple paths entering
one node indicate the weighted mean combination of the corresponding probability
estimates. Note that although we have more than one conditioning variable, we
retain the term “bigram” for a model of this type, to incidate that only factors
pertaining to the preceding word are required. This allows us in principle to use the
model in a bigram decoding framwork.
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