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ABSTRACT

In this paper we report on our recent work on noise-robust
feature extraction and model training to alleviate the
mismatch caused by di�erent microphones and ambient
room noise in the context of the 1995 DARPA-sponsored
H3 benchmark test, which used the unlimited-vocabulary
North American Business News (NABN) database. We
present a novel noise-robust feature extraction algorithm
that is a combination of our previously developed mini-
mum mean square error (MMSE) log-energy estimation al-
gorithm and the probabilistic optimum �ltering (POF) al-
gorithm. We also studied an approach based on training the
automatic speech recognition (ASR) system with previously
collected noisy speech. While both the above approaches
gave signi�cant improvements, it was found that combin-
ing them gave the best results. We also report on a new
part-of-speech (POS) language model that makes it possi-
ble to train robust POS language models that incorporate
longer contexts than is possible with word-based language
models. Preliminary results using this approach were en-
couraging.

1. INTRODUCTION

It is well known that mismatches between the training and
testing conditions can severely degrade the performance
of automatic speech recognition (ASR) systems. Exam-
ples of such mismatches include di�erent noise, microphone,
and channel conditions, and di�erent training and test-
ing speakers. In this paper, we present our recent work
on noise-robust speech recognition in the context of the
1995 DARPA-sponsored H3 benchmark test, which eval-
uated the performance of ASR systems under noisy and
degraded acoustic conditions. We present a novel noise-
robust feature extraction algorithm that is a combination
of our previously developed minimum mean square error
(MMSE) log-energy estimation algorithm [1] and the prob-
abilistic optimum �ltering (POF) algorithm [2]. Our ASR
system is based on hidden Markov models (HMM) which
were trained using the SI-284 Wall Street Journal (WSJ)
Sennheiser clean speech database. Given test speech from
a new noisy environment, our noise-robust feature extrac-
tion algorithm attempts to estimate clean features so as to
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bridge the mismatch between the noisy test speech and the
clean HMMs. This algorithm was the main noise-robust
feature of the SRI system that was evaluated in the 1995
H3 benchmark. This algorithm gave a signi�cant improve-
ment in performance compared to the baseline (nonrobust)
Mel-cepstrum-based feature extraction scheme.
After the benchmarks were completed, we studied an ap-

proach based on training the HMMs with the alternate mi-
crophone data of the WSJ SI-284 database, since this ap-
proach was used advantageously by other researchers during
the benchmarks. The models trained with this approach are
then used to recognize the noisy test speech using the base-
line (nonrobust) feature extraction method. The alternate
microphones in both the SI-284 database and in the test
database generally pick up a higher level of noise than the
Sennheiser microphone. If there is a match between the
noise observed in the SI-284 training set and the test set,
then one would expect this method to work well. Based on
our preliminary experiments, we found that for many mi-
crophones in the test database, this model-training method
performed comparably to the approach used by SRI during
the evaluations. However, for one microphone (the B&K
sound-level meter), for which the signal to noise ratio (SNR)
was signi�cantly lower than the other microphones used for
development, the performance of the noise-robust feature
extraction scheme was far better than the model-training
approach. Finally, it was found that the best results were
obtained when the noise-robust feature extraction scheme
was combined with the model-training approach.
Acoustic adaptation techniques can also be used to bridge

the mismatch between the training and testing acoustic
environments, and the di�erences between individual test
speakers and the training population. In previous work,
maximum-likelihood and Bayesian adaptation techniques
have been developed [3, 4, 5, 6], and have given signi�cant
improvements in performance for both nonnative speak-
ers [3] and noisy speech [7]. More recently, we have de-
veloped new feature and model-space adaptation techniques
and applied them to both nonnative and native speakers [8].
We have also recently developed a novel part-of-speech

(POS) tag-based language model. The idea behind this ap-
proach is to tag each word by its part-of-speech and then
train a statistical language model using these tags as ter-
minal symbols. Since the number of these tags is far less
than the number of vocabulary words, it is possible to train
robust tag-based language models which incorporate much
longer histories (for example, 5- and 6-gram language mod-



els) than is possible with word-based language models. Pre-
liminary experiments using this approach for the 1995 H3
test were encouraging.

The rest of this paper is organized as follows. In Sec-
tion 2, we brie
y describe the 1995 H3 task. In Section 3
we present the new noise-robust feature extraction algo-
rithm. In Section 4 we describe our acoustic adaptation
algorithms. In Section 5 we describe the language models
we used for the benchmarks. In Section 6 we give the results
of the SRI system on the H3 benchmark. In Section 7, we
present our initial results by training HMMs using the al-
ternate microphone SI-284 database and compare it to the
robust feature-extraction approach used by SRI during the
benchmark. Finally we present our conclusions in Section 8

2. THE 1995 H3 TASK

The 1995 H3 task was designed to improve basic
speaker-independent (SI) speech recognition performance
on unlimited-vocabulary read speech under acoustical con-
ditions that are somewhat more varied and degraded than
speech used in previous DARPA evaluations. The evalua-
tion data consisted of 20 speakers each reading 15 North
American Business News (NABN) utterances. The utter-
ances were recorded using a close-talking Sennheiser micro-
phone and one other alternate microphone. The alternate
microphone was �xed for each speaker but could vary from
speaker to speaker. The test comprised two parts: the H3-
P0 test measured the performance on the alternate micro-
phone data, and the H3-C0 test measured the performance
on the Sennheiser data.

For development, NIST provided data from each speaker
recorded through the Sennheiser microphone and simulta-
neously through seven other microphones. In order to cre-
ate a development test set from this data for the H3-P0
test, we sampled each of the seven alternate microphones
evenly across the 20 speakers to generate about 300 test
sentences. For the H3-C0 test data, we used the same
utterances recorded through the Sennheiser channel. The
acoustic models we used were continuous-density, genonic
HMMs [9]. Separate HMMs were trained for males and fe-
males using the SI-284 Sennheiser WSJ data. These genonic
HMMs have about 1,800 Gaussian mixtures, each with 32
components. For development, we generated a statistical
language model using the 60,000 most frequent words in
the 1994 NABN text corpus.

In order to facilitate quick experimentation during de-
velopment, we generated word lattices for the H3-C0
Sennheiser test speech with the genonic HMMs described
above using a forward-backward search, a bigram language
model, and the word-life algorithm described in [10]. These
lattices were then used for experimenting with di�erent al-
gorithms for the noisy H3-P0 data. While this gives overly
optimistic results for the H3-P0 data, these results can still
be used to qualitatively compare the performance of di�er-
ent algorithms.

3. NOISE-ROBUST FEATURE EXTRACTION

In order to reduce the mismatch caused by ambient room
noise, we experimented with methods based on the MMSE

log-energy estimation method [1] and the POF algo-
rithm [2], which were previously developed at SRI. We
then developed a new method that combined these two ap-
proaches.

3.1. MMSE log-energy estimation

Suppose the observed speech y is generated by passing the
sum of the original speech x and colored noise n through a
microphone channel. If the noise and speech are assumed
to be uncorrelated, then we can write

Py(!) = Px(!)H
2

1 (!) + PnwH
2

c (!)H
2

1 (!); (1)

where H1 and Hc are the frequency responses of the micro-
phone channel and the noise-coloring �lter, respectively, Py

and Px are the power spectra of y and x, and Pnw is the
white-noise spectrum. Estimates of the power spectra are
used to compute the log-power Lk in each Mel �lter-band,
k. This is then followed by an inverse discrete cosine trans-
form (DCT) operation to compute the Mel-cepstrum. The
estimates Ly of the log-energy of the noisy speech are dis-
torted because of the noise. The MMSE approach estimates
the clean log-energy Lx given the observed log energy Ly

by computing the conditional expected value of the clean
log-energy given the noisy log-energy [1]. Thus

L̂x = E [LxjLy] (2)

Once the MMSE estimates of the log-energy are computed,
we apply the inverse discrete cosine transform to get the
Mel cepstrum.

3.2. The POF approach

The POF approach di�ers from the MMSE approach in
that no particular model of signal and noise interaction is
assumed. Instead, it is assumed that the original (clean)
speech cepstra xc can be recovered from the noisy speech
cepstra yc by applying a set of linear transformations to the
noisy speech cepstra. Each transformation in the set is tied
to a separate acoustic region [2]. In order to train the POF
�lters, it is necessary to use stereo pairs of cepstrum vectors
from noisy and clean speech. Ideally, we would like to use
stereo pairs where the noisy speech matches that observed
in the test environment. Unfortunately, this is not always
possible since the test environment changes according to the
application. For the research reported in this paper, we cre-
ated the stereo training pairs by adding white noise to clean
WSJ speech. While this is not optimal, we got a signi�cant
improvement in performance by using this technique. We
trained POF �lters at various SNRs from -5 dB to 34 dB at
3 dB intervals. During testing, we computed the SNR for
a sentence and used the POF �lter with the closest SNR.
This approach is similar to our previous work [7]. However,
in [7] the noise used to train the POF �lters was matched
with the test environment noise.

3.3. MMSE/POF combined approach

The above two approaches can be easily combined as fol-
lows. First, the noisy speech is processed using the MMSE
log-energy estimation algorithm. The cepstrum derived as
a result of this approach is then mapped to an estimate of
the clean cepstrum using the POF algorithm.



Baseline MMSE POF MMSE+POF
39.7 34.8 31.7 31.0

Table 1. Word Error Rate (percent) Performance

The results of all the above techniques are shown in Ta-
ble 1. As can be seen from the table, the MMSE and
POF approaches individually gave a signi�cant improve-
ment compared to the baseline case. However, the combined
approach gave the best results, even though it was only
slightly better than the POF approach on this database.
However, since these experiments were performed using
clean lattices, the di�erence between the real error rate
and the error rate measured with clean lattices tends to
be larger as the error rate becomes larger. This is because
the constraints imposed by the lattice do not allow as many
high-error paths as a full grammar search network. How-
ever, for low error rates, the lattice error tends to re
ect
the true error. This was also veri�ed by our experiments.
For this reason, we expect the di�erence between the error
rate for the combined algorithm and the POF algorithm to
be larger than what the table shows. We also applied the
MMSE+POF algorithm to the Sennheiser test data and
found that it slightly improved the performance. Based on
this result, we decided to use the MMSE+POF feature ex-
traction scheme for both the alternate microphone data and
the Sennheiser data.

4. ACOUSTIC ADAPTATION

Acoustic adaptation can also be used to reduce the mis-
match between training and testing acoustic environments.
In previous work, maximum-likelihood (ML) and Bayesian
adaptation algorithms have been developed [3, 11, 4, 5, 6],
and applied to nonnative speech recognition [3] and noisy
speech recognition [7]. In particular, maximum-likelihood
adaptation has been applied in both the feature-space and
model-space [4, 8]. In feature-space schemes, the test
speech features are transformed to match the trained mod-
els, whereas in model-space schemes, the model parameters
are transformed to match the test features.
In our previous ML adaptation algorithms, we used an

a�ne transformation for each feature component [3, 4].
This transform results in a corresponding transformation
of the HMM mean and variance vectors. In order to ap-
proximate complex functions, a separate transform is used
for di�erent Gaussian clusters [3]. The mapping was applied
separately to each feature component in order to make the
problem mathematically tractable. However, if only the
mean vectors are transformed and the variances left un-
transformed, then a full-matrix a�ne transformation can
be easily estimated [12]. This approach was found to give
better results than a component-wise transformation for
speaker adaptation because of the modeling of the depen-
dencies between feature components [8].
We have also developed adaptation methods that use

transformations of the HMM variances as described in [4,
11, 8]. In one feature-space approach, we assume that the
test features are obtained by adding a random bias term
to the original speech features [4, 11]. The bias is modeled
as a Gaussian random variable with mean �b and variance

�2b . The speech means and variances are now transformed
by adding the mean and variance of the random bias to
the HMM means and variances. In a second model-space
approach, we have developed a technique for scaling the
HMM variances [4, 8]. In this case, each component of the
variance vector (in a diagonal covariance matrix) is scaled
according to

�
2

y = ��
2

x; (3)

where � is a scale factor to be estimated. We have previ-
ously reported improvements by using variance transforma-
tions for both channel mismatches [11, 4] and speaker adap-
tation [8]. Because of lack of time, we did not use this ap-
proach for the H3 evaluations. However, the variance scal-
ing transformation of Equation 3 was used to advantage in
the H3 evaluations by other researchers [13]. We note that
the di�erent adaptation techniques described above can be
applied in sequence as in [8].
In the H3 test, the speaker session boundaries are as-

sumed to be known, and this information could be used
by adaptation algorithms. We derived initial hypotheses
for each session by generating N-best lists using the base-
line acoustic models and bigram language models. These
lists were rescored using trigram language models to gen-
erate the hypotheses that were used for acoustic adapta-
tion. The method we used was a block-diagonal [8] matrix
a�ne transformation [12] of the HMM mean vectors. The
adapted models were then used to acoustically rescore the
N-best lists. We also used adapted crossword models in
a similar acoustic rescoring pass, the only di�erence be-
ing that for the crossword models we also used an unseen
triphone modeling scheme [14]. In order to adapt the cross-
word models, we used a context-independent (CI) phone
loop as the reference for each sentence. This procedure was
used mainly because of the lack of time. However we have
previously found that at operating error rates of about 20%,
the performance of the CI phone loop approach is compa-
rable to that of an approach using the �rst-pass hypotheses
for adaptation [15]. An advantage of the CI-phone loop
approach is that we do not have to do a recognition pass
through a large network in order to generate hypotheses
before adaptation.

5. LANGUAGE MODELING

The SRI evaluation system made use of four di�erent lan-
guage models, all based on the 60,000 word vocabulary that
had been selected for the o�cial CMU language model. A
bigram backo� model (a subset of the trigram model sup-
plied by CMU) was used during decoding. The other three
language models were used only as knowledge sources for
reordering N-best lists. The rescoring used log probability
scores from the language models and combined them by op-
timized linear weighting (see Section 6). The rescoring mod-
els were a standard backo� word trigram language model,
a 5-gram part-of-speech model, and a 4th-order POS-based
hidden Markov model. We will describe each in turn.

5.1. Word trigram model

The word trigram model used was a standard backo� lan-
guage model generated using Good-Turing discounting. It
was based on the trigram counts supplied by CMU, which



were obtained from 305 million words of NABN sources. We
lowered the n-gram cut-o�s relative to the o�cial trigram
model so as to include all bigrams, and trigrams occurring
at least twice, resulting in 16.5 million bigrams and 22.5
million trigrams.

5.2. Part-of-speech 5-gram model

A second knowledge source evaluates hypotheses according
to their POS sequences. The rationale behind the POS
model is that it can model syntactic dependencies that are
outside the scope of the usual word-based N-gram models.
Because of the much smaller vocabulary (173 POS labels
in our case), a tag-based model of order 5 or higher can
be trained and used e�ectively given the available training
data. For POS tagging we use the well-established prob-
abilistic paradigm that models word sequences as outputs
from a hidden Markov process whose states are POS N-
grams [16].
For a given word sequence w1 : : : wn we �nd the

POS tag sequence t1 : : : tn with the highest probability
PPOS(t1 : : : tn), such that each ti is compatible with the
wi. PPOS is given by a 5-gram POS model. To �nd the
possible tags ti for a word wi we used a precompiled dic-
tionary where possible. For unknown words, a tree of word
su�xes containing POS statistics is consulted, e�ectively
guessing a word's tag based on parts of its morphology.
The log probability of the best tag sequence is then used as
a knowledge source in rescoring.
The POS 5-gram model was trained on the 1994 CSR

NABN corpus. The model is bootstrapped by �rst training
only on POS N-grams that can be unambiguously predicted
from an initial dictionary. Following that, the POS model
is used to disambiguate tags on the training corpus, and tag
sequences thus obtained are used for successive reestimation
of the model. The POS model used in the �nal system
contained 1.4 million 4-grams and 2.8 million 5-grams.

5.3. POS-based hidden Markov model

In addition to scoring the POS tags themselves, we can
also use the POS model as a language model proper by
viewing the POS tags as a hidden state sequence emitting
the observed words. We approximate

P (w1 : : : wn) =
X

t1:::tn

P (w1 : : : wnjt1 : : : tn)PPOS(t1 : : : tn)

�
X

t1 : : : tn

nY

i=1

P (wijti)PPOS(t1 : : : tn)

The probabilities P (wijti) are computed from statistics ob-
tained in tagging the NABN training corpus. PPOS is ob-
tained from the 5-gram POS model described above (the
underlying HMM is thus of order 4) Also, the summation
above is approximated by considering only the most prob-
able tag sequences t1 : : : tn (the 64 best in our implementa-
tion).
Although the POS-based language modeling techniques

are quite old, they have not been used extensively in large-
vocabulary tasks with large amounts of training data. POS-
based models typically do not improve on word N-gram

models in these tasks since they do not capture local lexi-
cal co-occurrence statistics as well (although they can o�er
good size/performance trade-o�s [17]). The three models
used here (one word-based, two POS-based) represent com-
plementary aspects of language and should be combined us-
ing a principled technique such as maximum entropy [18].
We chose the linear weighting approach as a suboptimal
compromise that was less computationally expensive and
easy to integrate into our system.

6. H3 BENCHMARK RESULTS

For the 1995 H3 benchmark system, a two-pass recogni-
tion approach was used: In the �rst pass, N-best lists were
generated using the baseline genonic HMMs described in
Section 2 and the standard 60,000-word bigram language
model provided by CMU. The front-end features were the
12-dimensional Mel-cepstrum and normalized energy, along
with the corresponding delta and delta-delta features. Since
the HMMs are gender-dependent, it is �rst necessary to de-
termine the gender of the test speaker. Gender identi�ca-
tion during recognition is accomplished using a Gaussian
mixture model. Separate models were trained for clean
speech and noisy speech. The noisy speech model was
trained using WSJ data with arti�cially added noise to give
an SNR of 12 dB. For gender selection during recognition,
the average SNR for the entire session was computed and
compared against a threshold (21 dB). If the SNR was less
than the threshold the noisy model was used and otherwise
the clean model was used. The 21 dB threshold was deter-
mined from SNR histograms of the Sennheiser and alternate
microphone data provided in the 1995 development data.
In the second pass, the N-best lists were rescored with

six di�erent knowledge sources:

1. Baseline noncrossword genonic HMMs with acoustic
adaptation

2. Crossword genonic HMMs with acoustic adaptation

3. The number of words in the N-best hypotheses

4. Trigram language models

5. A 5-gram POS language model

6. A 5th-order HMM using POS tags as the underlying
states and words as the observables

The scores from these knowledge sources were linearly com-
bined, with the weights for each knowledge source being
computed so as to minimize the error rate on the develop-
ment test set. This was done using Powell's algorithm [19].
Table 2 gives the results of evaluating our system on the

1995 H3 development and evaluation data. For the evalu-
ation data, we list both the pre-adjudicated error rate as
computed at SRI, and the �nal adjudicated error rate com-
puted by NIST. The �rst column of the table gives the
1-best error rate of the �rst-pass N-best generation step.
This pass used only noncrossword HMMs and the standard
bigram language model. We did not optimize the weight of
the language model score in relation to the acoustic model
score. The second column gives the result of rescoring the
N-best list with the trigram language model and the base-
line noncrossword acoustic models. We used the same rel-
ative weight between acoustic and language models for the



Non-crossword Yes Yes Yes
HMMs (NoCW)

Cross-word Yes
HMMs (CW)

Adapted NoCW Yes Yes
Adapted CW Yes Yes

Bigram Yes
Trigram Yes Yes Yes Yes

Number of words Yes Yes Yes
POS-tag Yes

lang. model

Development test set error rate
H3-P0 27.7 22.8 21.7 20.7 20.0
H3-C0 16.4 11.9 10.8 10.6 9.9

Evaluation test set error rate
H3-P0 34.4 28.5 27.8 25.6 25.4

(adjudicated score) 24.6
H3-C0 17.4 12.8 11.8 10.9 10.7

(adjudicated score) 9.7

Table 2. Results on the 1995 H3 benchmark

�rst two columns. In the third column, we included cross-
word acoustic models and the number of words in the N-best
hypothesis. The weights of the di�erent knowledge sources
were optimized using Powell's algorithm [19]. The fourth
column is identical to the third except that adapted acous-
tic models are used. Finally, in the �fth column, we added
the POS tag-based language model knowledge sources.

7. EXPERIMENTS WITH MODEL TRAINING

After the conclusion of the benchmarks, we studied a
method for improving the recognition performance for noisy
speech based on training the HMMs using the alternate mi-
crophone SI-284 database. Such an approach was used to
advantage by some sites during the evaluations (for example
see [13]).
We would expect this approach to work well if there is a

match between the noise during training and testing. How-
ever, if there is a signi�cant departure from the training con-
ditions, then the performance will not be good. We found
that for many microphones, the performance of this method
was similar to that of the MMSE+POF feature extraction
algorithm we used during the evaluations. However, for the
B&K sound-level-meter microphone, the approach of train-
ing HMMs on the SI-284 alternate microphone database
was signi�cantly worse than the MMSE+POF approach.
This shows that the method of training on noisy data could
fail when there is a signi�cant mismatch between the noise
in the training and testing conditions. We then used the
models trained using the alternate microphone data, but
performed the MMSE+POF robust feature extraction dur-
ing recognition. The performance of this method was better
compared to the previous case and it was also better than
the method used by SRI during the evaluations. Finally,
we used the MMSE+POF algorithm to process the alter-
nate microphone data prior to training the models, and also
used the MMSE+POF scheme during recognition. This ap-
proach was found to work the best.

train senn., test alt_1.                     

train senn., test alt_1. (mmse+pof)          

train alt_2, test alt_1                      

train alt_2 (mmse+pof), test alt_1 (mmse+pof)
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Ratio of alternate mike error to sennheiser error for different algorithms

Figure 1. Ratio of alternate microphone error to Sennheiser
error for di�erent microphones

Figure 1 plots the ratio of the error rate for the alter-
nate microphone to the error rate for the Sennheiser mi-
crophone for each alternate microphone in the male subset
of the H3 development set. We would like this ratio to be
close to 1. For severely noisy conditions, this ratio will be
large. The �gure shows four di�erent plots. The �rst plot
(train Senn., test alt 1) is the baseline case of training on
clean data and testing on the alternate microphone data.
The second curve (train Senn., test alt 1 (mmse+pof)) re-

ects the performance of the scheme used by SRI for the
evaluations. The models are trained on Sennheiser speech,
but during testing the MMSE+POF approach is used. It
can be seen that a signi�cant improvement in performance
is obtained by using this method. The third plot (train
alt 2, test alt 1) shows the performance when the mod-
els are trained on the alternate microphone data and the
standard (nonrobust) feature extraction scheme is used dur-
ing training and testing. The �gure shows that while this
method worked well for most of the microphones, it per-
formed much worse than the MMSE+POF approach for
one microphone (the B&K sound-level-meter microphone).
Finally, the last curve (train alt 2 (mmse+pof), test alt 1
(mmse+pof)) shows the case of training on the alternate
microphone data but after processing with MMSE+POF,
and testing on the MMSE+POF processed data. This was
seen to give the best performance.

Based on the experiment, we decided to regenerate N-best
lists for the evaluation data using the method of training on
alternate microphone data processed using MMSE+POF.
These lists were then rescored with trigram language mod-
els. The results of this experiment are shown in Table 3.
From the table we see that both the 1-best error rate from
the initial bigram N-best generation pass, and the trigram
rescored error are signi�cantly lower than those achieved
during the evaluations. We did not rescore the lists with
all the other knowledge sources. However, because an addi-
tional 3% absolute reduction in the error rate was achieved
by using these knowledge sources for the evaluation system



1-Best Trigram Rescore
Evaluation 34.4 28.1
System
Train alt 2 (mmse+pof), 28.5 22.3
Test alt 1 (mmse+pof)

Table 3. Error-rates for SRI evaluation system and model train-
ing with alternate microphone data

(see Table 2), we expect the �nal error rate to drop from
the 22:3% in Table 3 to about 19%.

8. CONCLUSION

In this paper we have presented the results of our re-
search on noise-robust recognition, acoustic adaptation, and
a new POS language modeling technique. It was found
that our previously developed MMSE log-energy estima-
tion techniques and the POF technique were able to sig-
ni�cantly lower the error rate for HMMs trained using
clean Sennheiser speech and tested on noisy speech col-
lected from alternate microphones. However, the combined
MMSE+POF method performed better than either method
alone. It was found that acoustic adaptation gave an addi-
tional improvement in performance for both the clean and
alternate microphone speech. A new POS language model
was presented, which can be used to train robust language
models that incorporate longer contextual histories than
is possible with word-based language models. Our results
with this approach were encouraging. Finally, we experi-
mented with an approach for noise-robust recognition based
on training the HMMs on alternate microphone data. While
it is well known that this approach will perform well if the
training noise and testing noise are matched, we found that
when there is a signi�cant mismatch, this method has a
poor performance (worse than the MMSE+POF approach).
However, if combined with the MMSE+POF method, the
method of model training with alternate microphone noisy
data gave the best results.
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