
ROBUST SPEECH REPRESENTATION OF VOICED SOUNDS BASED ON SYNCHRONY
DETERMINATION WITH PLLS

Patricia Pelle, Claudio Estienne∗

Institute of Biomedical Engineering
School of Engineering

University of Buenos Aires, Argentina

Horacio Franco

Speech Technology and Research Laboratory
SRI International, Menlo Park, CA, USA

ABSTRACT

We propose to include synchrony effects, known to exist in the audi-
tory system, to represent voiced parts of the speech signal in a robust
way. The system decomposes the input signal by means of a band-
pass filter bank, and utilizes a bank of phase locked loops (PLLs)
to obtain information on the frequencies present at a specific time.
This information about the frequency distribution is transformed into
a spectral-like representation based on synchrony effects. Noisy
speech recognition experiments are performed using this synchrony-
based spectrum, which is transformed into a small set of coefficients
by using a transformation similar to that utilized for mel cepstrum
features. We show that recognition performance compared to mel
cepstrum features is advantageous, when measured over a range of
SNR conditions, especially in the high noise level case.

Index Terms: speech features, robustness, PLL, noise, auditory sys-
tem.

1. INTRODUCTION

In speech feature development, robustness to noise is an issue of
great concern. It is well known that the most widely used front ends
degrade notably in the presence of noise. One course of action for
correcting this problem consists of developing more robust features,
and one avenue to obtain such performance is to try to find features
resembling how the peripheral auditory system behaves. This per-
ceptually motivated approach has given origin to major advances in
speech representation–namely, mel cepstrum [1] and perceptual lin-
eal prediction (PLP) features [2]. Those front ends model the inner
ear processing by making a frequency decomposition of the input
signal into biologically inspired nonuniform bandwidth channels of
constant Q, instead of a constant-bandwidth discrete Fourier trans-
form (DFT) decomposition.

This conceptual approach enriches the representation of speech,
but there are other known biological facts in the mammalian inner
ear that have not yet been applied successfully to this area. One
of these facts is that time-varying spectral features may be well
represented by phase locked responses of the auditory nerve fibers,
which are also very robust against noises added to the input signal.
This observation has given origin to several attempts to represent
the speech sounds. Models like Seneff’s [3], Ensemble Interval
Histogram (EIH) [4], or its simplified version of zero crossings with
peak amplitudes (ZCPA) [5] have focused on timing information in
the inner cells, and particularly on the synchronous manner in which
spikes are produced, resembling almost an in-phase version of the
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input in the band of frequencies on which each cell operates. These
models have supported, in general terms, the concept that fine time
information is useful in noisy environments. In this work we present
another approach that incorporates the use of synchrony to represent
voiced parts of the speech signal. The system is composed of a stage
that decomposes the input and extracts synchrony information in a
biologically motivated way. A later stage converts the output of this
first stage into a set of features suited to be applied to a conventional
speech recognition system. The design of the overall system is
evaluated by using the final features in a standard recognition task.

The system proposed to extract synchrony information has an
architecture that we have also used in previous work, where we ex-
plored the use of synchrony-related features to represent the speech
fundamental frequency (pitch) in a robust way [6, 7, 8]. A filter
bank divides the signal following the common approach used in most
auditory-inspired front ends, i.e., using asymmetric, overlapping and
constant Q filters [9]. The filter bank outputs are then processed to
obtain synchrony information by feeding them into a set of phase
locked loops (PLLs). PLLs are nonlinear devices frequently used in
any signal processing task related to synchrony determination, like
FM demodulation, frequency multiplexing, and so on [10]. Espe-
cially interesting is the robustness of these devices in the presence of
noise. The choice of this kind of device may be supported by biolog-
ical evidence showing that active phenomena would be responsible
for the synchronizing behavior of our auditory system [11],[12]. The
choice of PLLs to obtain synchrony information is very appealing to
those who are familiar with them. For example, PLLs were used by
Wang and Kumaresan [13] to represent speech sounds.

There is strong agreement among the speech community about
the general design and characteristics of the initial spectral decom-
position of the input signal. Some agreement also exists about the
importance of synchrony and time representations in the auditory
system. But there is less agreement with the manner in which this
information should be transformed to represent sound signals in a
sense that may be used in a standard speech processing system. The
approach that we follow in this work to produce such transforma-
tion is inspired by an observation pointed out in [14] and [15]. In
those papers the authors mention that “synchronization” of pattern
discharges of the auditory nerve “to the first formant component is
particularly strong and widespread, reflecting the fact that this is the
largest component in the stimulus”. Similar observations are de-
scribed for the rest of the formants. According to this observation,
the final stage of our system is intended to display the spectral por-
tions that are most widely signaled in the synchronization pattern.
Frequencies that are often repeated at the PLL outputs, along with
their variation in time, are emphasized in the spectral representation
of the stimulus. The approach is similar to our earlier work, [16], but
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Fig. 1. System block description.

in this case a larger number of filter and PLLs is used to obtain the
spectral representation, along with other complementary validations
for frequency detection that increase the robustness of the system.

The rest of the paper is divided into a section that describes in
detail the filter bank and the synchronization stage based on PLLs,
another section explaining the spectrum-like composition of the syn-
chrony information, and two final sections describing the experimen-
tal setup, and results obtained as well as pending issues.

2. SYSTEM DESCRIPTION

The general system is illustrated in Fig.1. The first stage is a bank
of bandpass filters that unfolds the input signal into simpler signals,
each filter followed by one PLL. The outputs of each PLL are the
inputs to the spectral composition stage. Finally, the spectral rep-
resentation obtained is transformed using conventional transforma-
tions like the triangular filter bank and the cosine transform to con-
vert the pseudo-spectrum into a set of PLL cepstral coefficients. In
the decomposition stage, following the biological motivation, filters
restrict the frequency band into which PLLs should be able to syn-
chronize. We have chosen the kind of filters suggested by Wang and
Shamma [17], which are based on biological considerations about
the cochlea functioning. The general form of the filters is set accord-
ing to the principle of approximately constant Q factor, covering
the range between 100 Hz and 5000 Hz, linearly distributed in a mel
scale. The degree of asymmetry and Q was experimentally set, using
as guidance the biological descriptions of [15]. Wide filters, with a
great overlap between them, allow the PLLs to be in lock with main
formants, but, if the filter is too wide, it is possible to lose impor-
tant inter-formant details. The degree of asymmetry is related to the
number of PLLs that are phase locked to a stimulus. In our exper-
iments we used 243 filters, Q = 0.3, an asymmetry factor of 0.1,
and all filters are finite impulsive response (FIR) of order 2048. The
signal is preemphasized before applying it to the filter bank, in order
to enhance high frequencies that otherwise might be lost. An order
1 FIR filter is used, with the same coefficients as in the case of mel
cepstrum calculation.

2.1. Phase locked loop operation

We used PLLs as the instrument to detect synchrony. Here, we
explain PLL operation and its output signals in order to justify its
use in determining synchrony. A PLL consists of a loop contain-
ing three basic blocks [10] (Fig.2): a voltage-controlled-oscillator
(VCO) whose frequency is controlled by an external voltage, a phase
detector that is usually a multiplier, and a low-pass filter (loop filter).
The phase detector compares the phase of a periodic input signal
against the phase of the VCO output, resulting in an error signal that
is a function of the difference between instantaneous phases of the
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input (θi(t)) and VCO (θo(t)). This error signal is then filtered and
amplified by the loop filter, and applied as a control voltage to the
VCO. The VCO output is fed then to the phase detector, indicating a
change in its instantaneous frequency if needed. The control voltage
forces the output frequency of the VCO to vary in a direction that
reduces the phase difference between VCO output and the input sig-
nal. If both phases are sufficiently close, negative feedback makes
the VCO lock to or synchronize with the incoming signal. Once
in lock, both VCO output and input phases are identical and, as a
consequence, their frequencies are also equal. The VCO operates
at an initial free-running frequency (ω0) different from 0, which is
established at the expected mean input frequency range in order to
reduce time needed to be in lock. The control force applied to the
VCO may be used to calculate the instantaneous frequency of the
VCO, freq(t). But this frequency can be considered equal to the
input frequency only if the difference between the input and VCO
phases is low. So an indication of the degree of lock of the PLL is
provided, lock(t), in order to validate the frequency indication. This
signal is generated with a quadrature phase detector followed by a
smoothing filter. When the difference detected by the multiplier in
the main loop tends to be zero (locked condition), the output of the
second phase detector tends to be maximum, and a measure of the
lock-in degree of the main loop is obtained. The smoothing filter is
necessary to avoid flickering of the lock indicator signal. We have
used a discrete version of an analog PLL, as described in [18]. The
parameters setting was made by tuning to obtain a good behavior of
lock, in both clean and noisy conditions. We used a second-order
loop filter, whose parameters are set to a constant ξ = 0.5 for all the
PLLs, and a linearly varying ωn/(2π) from 1 to 70 Hz. The free-
running frequency of each PLL was set to the peak frequency of the
corresponding filter, achieving fast in-lock state for most conditions.

2.2. Spectrum interpolation

The spectral representation is based on the PLL bank frequency out-
puts. The goal is to construct for each frame a vector containing
some kind of statistical measure about which frequencies are mainly
present in the PLL bank output, and their average drift in time within
the frame. The set of these vectors can be arranged in the form of a
pseudo-spectrum, similar to the power spectrum of the signal.

Some considerations should be taken into account before the
PLL frequency indication can be considered a useful estimation of
the true signal frequency composition. One fact is that the PLL al-
ways gives a frequency indication, even though there is not a sinu-
soidal signal in its input. To consider the PLL frequency as a valid
measure of the input frequency, the lockin signal can be used as a
primary validation measurement, as was previously mentioned. If
the lockin indication is high, this means that there is a sinusoidal
signal present at the PLL input, and also it indicates that both the
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PLL input signal and the VCO’s phases are sufficiently close that
the frequency indication can be considered a true estimation of the
PLL input signal frequency. But, due to the presence of the bandpass
filter connected to the PLL input, a high value for the lockin signal
does not allways indicate the presence of a periodic signal at the
filter input. For example, a wide-band noise filtered by a cochlear
(bandpass) filter produces a narrow-band noisy signal. This signal
also behaves as a quasi-sinusoidal signal of erratic frequency cen-
tered around the peak of the filter frequency response and slowly
varing amplitude. This kind of signal likewise depicts a high lockin
indication, but not as response to a periodic stimulus. To overcome
this problem we propose not only to verify that the lockin signal is
high, but also to compare the output of each PLL with those of its
neighbors. To implement this verification, the VCO’s outputs of the
nearest neighbors’ PLLs are utilized. If the stimulus is a periodic
signal, due to the great number of filter-PLLs and the superposition
of frequency responses of the filters, it is likely that many neighbor
PLLs synchronize to the same sinusoidal component in the periodic
input, and, as a consequence, their VCO phases will also be equal.
On the contrary, if the input signal is noisy, the bandpass filter out-
puts correspond to different signals, and also the VCO output ob-
served in neighbors’ PLLs will be different. In more detail, the first
step to composing the spectral distribution of the signal consists of
validation of the output frequency of each PLLi, for each sample
time n within an analysis frame. We consider that a PLLi is indicat-
ing a valid frequency if locki(n) and V COi(n) outputs meet these
two conditions:

locki(n)/lockmax(n) > thr1

V COi(n)− 1/2(V COi−1(n) + V COi+1(n)) < thr2

where lockmax(n) is the maximum value of the lockin indicator for
all PLLi at time n, and thr1 and thr2 are parameters of the system
that must be determined experimentaly. In our case, we use thr1 =
0.15 and thr2 = 0.1.

When an analysis frame is completed, for each PLLi there
will be a set of ordered pairs of validated frequencies and times
{(fvi, nvi)}, whose element number may vary between a maxi-
mum equal to the total number of samples in the frame and zero.
The second step is the calculation of linear regression by least
squares fitting of the validated frequencies as a function of their
times, for each PLL with a number of validated frequencies greater
than half the number of samples in the frame. In this way we
transform the set of validated frequencies into two coefficients: the
validated frequencies mean f i, and the linear coefficient bi related
to the average drift of PLL frequencies with time within the frame.
So, the second step consists of calculating the coefficients f i and bi
that minimize

∑

n∈[1,nsamples]

(fvi − f i − nvi bi)
2

for each PLLi with the required number of validated frequencies in
the analysis frame. The frame width is set to 20 ms, and the frame
rate is 100 frames per second.

The final step consists of composing two separate spectral de-
scriptions with the coefficients f i and bi. To compose the spectral
description based on the f i, a histogram of the number of occur-
rences of each mean frequency within a frame is calculated. This
histogram is normalized by the total number of PLLs with validated
frequencies in the frame. In this way, the normalized histogram is
an estimate of the probability of each frequency in this frame. For-
mant frequencies will display a high amplitude when a high number

Fig. 3. Power spectrum, histogram of means frequencies and lin-

ear coefficients spectral distribution for clean signal (upper row) and

SNR of 15 dB (lower row).

of PLLs indicates those frequencies. We used 1000 bins to cover the
range of 0 to 5000 Hz of possible values for mean frequencies. With
the set of linear coefficients {bi} another spectral distribution is cal-
culated, by placing at each frequency bin the average of the subset of
linear coefficients bi whose corresponding f i coincide with this bin
position. Both the histograms of mean frequencies and the linear co-
efficients spectral distribution are filtered with a Hamming window
width of 36 bins, in order to smooth the representation. The col-
lection of histograms of mean frequencies for each frame, and the
spectral distribution of linear coefficients, may be considered as a
kind of spectral representation. Finally, the two spectral representa-
tions are transformed separately, as is done with the power spectrum
in the mel cepstrum case, using a 21-triangular-filter bank for fre-
quency warping, and the cosine transform of the log of the warped
representations, shifted for proper conditioning, resulting in 13 co-
efficients for each representation. The two sets of 13 coefficients are
concatenated in a vector that we refer to as the augmented PLLm-
fcc vector. In Fig. 3 we show the power spectrum, the histogram of
mean frequencies, and the linear coefficient spectral distribution for
a synthetic speech signal corresponding to the emission /da/, as used
in [15]. The first row shows the representation for the clean signal. It
is clear that formant frequencies are the strongest in the histogram of
means frequencies, while in the linear coefficients spectral distribu-
tion it can be noted that consonant /d/ has a stronger variation in time
than in the case of vowel /a/. When comparing these spectra with the
lower row of graphs where a white noise of 15 dB of SNR is added,
it is possible to observe the robustness of the representations in the
presence of noise.

3. EXPERIMENTS

We used an experimental setup to test the performance of the pro-
posed representation as described here. The proposed augmented
PLLmfcc coefficients are applied to a task of vowel recognition in
noisy conditions. Acoustic models for 15 vowels extracted from the
TIMIT reduced phone set of 39 phonemes were trained in clean con-
ditions. These models were used to recognize the test portion of
the database, from which all other phonemes were removed. These
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tests were performed in both clean and noisy conditions where white
noise was added at several levels of SNR. Noise samples were ex-
tracted from the NOISEX database, available at the Rice University
Digital Signal Processing (DSP) group home page. Experimental re-
sults, in terms of correct recognition rate in percent, are compared
against a standard mel cepstrum front end, using 13 coefficients,
as available in the Hidden Markov Model Toolkit (HTK). Vowel
acoustic models of three states, with 50 Gaussian mixtures each, are
trained for mel cepstrum with Δ and ΔΔ coefficients. For the aug-
mented PLLmfcc coefficients only Δ coefficients are calculated, be-
cause linear regression coefficients have an implicit velocity behav-
ior, so Δ coefficients from the augmented PLLmfcc include acceler-
ation information. Best performance is obtained with 15 Gaussians
for state. The training and testing process was also implemented in
HTK. The results obtained are shown in Fig. 4.

4. RESULTS AND DISCUSSION

The obtained results show a gain in recognition accuracy for every
signal-to-noise-ratio, except for those at very high or clean speech.
Also it is possible to note the remarkable flat performance, unaf-
fected by noise level, over a large range that extends up to at least 10
dB SNR. These facts allow us to conclude that the hypothesis of ro-
bustness of the proposed PLL-based representation is well founded.

Concluding, in this work we have shown useful properties of
PLL-based features in the representation of speech in noisy condi-
tions for sonorous parts of speech signals. Issues remain about the
manner in which this information should be combined with other
features to cover unvoiced segments.
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