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ABSTRACT 
The SRI team joined the subtask of Chinese-English Patent 
machine translation evaluation, and submitted the transla­
tion results using a combined output from two types of gram­
mars supported in SRlnterp, with two different word seg­
mentations. We investigated the effect of adding sparse fea­
tures, together with several optimization strategies. Also,for 
the PatentMT domain, we carried out preliminary experi­
ments on adapting language models. Our results showed 
positive improvements using these approaches. 

Keywords 
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1. INTRODUCTION 
The SRI team focused on three basic aspects of patentMT 

in a two-week effort. First is the preprocessing of the patent 
domain specific data, including word segmentations and named 
entity tagging; second, we investigated the effects of lever­
aging sparse features and optimized them for the evalua­
tion task; third, we tried language model adaptation for the 
patent domain. 

There are many long words/terminology terms in the patent 
data, and word segmentation is one key problem of translat­
ing the unknown word or low-frequency terminologies. Two 
word segmenters are applied in our system, with minimal ad­
justments of the vocabularies used for the patent data. One 
is the Stanford word segmenter [9], and the other is the Cam­
bridge word segmenter. With the word-segmented streams, 
we applied the entity tagging using the text normalization 
toolkit Datcutr [11]. The formula expressions, new mate­
rials' names, and technical terms in the patent data posed 
great challenges in the preprocessing of the patent data, and 
the word alignment quality. 

Another aspect of the translation in our experiments is 
to investigate the sparse features. Feature selection is used, 
which is a two-step process, in our empirical experiments to 
avoid overfitting, and also to ease the burden of the opti­
mizations. We applied tuning as reranking approach [4], to­
gether with an SVM classifier to tune the parameters. This 

margin-based classifier allows a flexible framework for fea­
ture selection and applying priors to the paranl€ters estima­
tions. 

We also investigated the effects of language model (LM) 
adaptation. Due to time constraints, the results did not 
go into our final submission. A subset of data is retrieved 
regarding the relevant translations, and a smaller domain­
specific LM is then built. It is interpolated with the big 
background LM, and the weights are learned from held-out 
data. Overall, we observed a small improvement using the 
LM adaptation. 

2. PREPROCESSING OF THE DATA 
The patent data poses special preprocessing challenges 

to the preprocessing process. J'viany times, we found that 
mixed regular expressions can cut sentences in half, and 
cause serious problems in our system building. Formula, 
English expressions such as, "FIG", "Fig.", are mixed with 
Chinese character streams, and short-hand representations 
of the technical terms. Entity tagging tends to cause se­
rious mistakes in these ca.~es, often breaking things apart, 
the alignment suffering from non l-t0-1 mapping between 
entities, and finally losing translations for them. The many 
UNK words also posed significant challenges to the language 
model scoring, which cannot figure out the correct probahil­
ities inside of the tagged entities. 

We modified the regular expressions inside the Decatur 
pipeline, to mainly accommodate ca.<;es occurring in the patent 
Chinese data. Due to the nature of the word segmenters, 
we need to modify the MToken inside the Decatur pipeline 
to handle the broken segmentations, and try to simulate 
the same processing the English-alike tokens in the Chinese 
streams. In the end, the Stanford Chinese word segmenter 
tends to generates long words, such a.<; Chinese terminolo­
gies, resulting a large vocabulary containing 272K words. 
For the Cambridge word segmenter, the resulting vocabu­
lary is much smaller at 101K words, without breaking the 
long terminologies into too many small pieces like charac­
ters. 

Besides the MToekns as in the Decatur pipeline for tag­
ging numbers and dates, for test data we introduced a special 
token called $eng to mark the English tokens in the source 
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Table 1: Sparse Feature Types and Examples 
Feat Categories Information I Examples 

Lexical if the word-pair is seen in a lexicon f -e 
Fertility Source word fertility f - vO, f - vI, f - v2, f - v3+ 
Rule type Detailed Riero rule types F-XI-F-X2 B XI-E-X2 

it the target side contams monotone or reordermg
Reorder type WXOWX1W 

rof n"n-terminals 
Target spontaneous words Predefined English spontaneous words the, this, such, was... 
Bigrams Bigrams seen in the target side of the phrases BI wan~jin-ping 
Frequency of rules Bined frequency if the observed rules freql, ... , freqK 

language such as "GPS", "LED", and company names such 
as "Merck". In the ngram queries for LM probabilities, the 
decoding process will look inside of $eng's content for com­
puting probabilities. 

3. TRANSLATION ENGINE 
Our systems are based on the SRInterp [12], supporting 

several PSCFG grammars, including Riero and string-to­
dependency tree. The decoder is chart-based, and standard 
CKY algorithms are applied to derive translations from a 
packed forest. Several pruning strategies are supported for 
speed; consensus decoding and force decoding are also sup­
ported. Multiple types and multiple mixtures of language 
models are also supported. In our submission, we applied 
Riero-style grammar, and a string-to-dependency tree gram­
mar (S2D), with a considerations of their speed for short 
development cycles. In our basic setup, we have about 12 
dimensions of features and one single LM. In our submit­
ted system, we chose the sparse feature from the setup, as 
descrihed in section 4. 

With these two different types of grammar, we applied 
a system combination, to combine the outputs from differ­
ent grammars and word segmentations. It turns out the 
two grammars are similar in terms of performance for the 
developrnent data, and we did not observe significallt im­
provements over the best baseline system. 

System combination uses a two-pass alignment algorithm 
to generate a confusion network [1] from unique lO-best sys­
tem outputs from each of the systems, and then finds the 
final outputs based on a set of features, including system 
ID and number of OOVs in the pass, and a language model 
estimated from all n-best hypotheses on the test sets. The 
feature and language model weights were trained using mini­
mum error rate training [5] with a simplex search algorithm. 
The simplex search algoritlun is implemented inside SRILM 
[8]. 

4. SPARSE FEATURES 
Sparse features arc introduced to handle the specific errors 

in the translation output. In our system, we computed seven 
categories of spar,;e features, as listed in Table 1. Some of 
the features can be treated as dense, such as the category of 
frequency of the rule, but majority of them are sparse. 

The lexicon features are derived from the IBM model-I, 
in which we check if a word-pair f B e occurs in the deriva­
tion. The fertility features check how many times a word is 
aligned to 1 word, 2 words, or 3+ words. The reordering fea­
tures will only check the reordering between nontenninals, 
which is basically a simple count of the reorderings in the 
derivation tree; the rule type is a more detailed description 

of the PSCFG fIlles used, and 38 types of rules are defined 
in our system. Several examples together with the weights 
are given in Table 2. 

We start with a list of 2, 739, 369 sparse features, and run 
optimizations and selections iteratively to avoid overfitting. 

4.1 Optimization 
We chose the tuning-as-reranking algorithm [4J for opti­

mizing the sparse features. We lise the margin-based classi­
fier SVM to leverage the priors for the weights to be learned. 
The weights for each feature can be used for a second step of 
feature selection. The weights closer to zero, can be safely 
discarded in the next iteration for optimization. Empiri­
cally, the weights learned from SVM are also more inter­
pretable than the weights learned from the maxent cia.ssi­
fier. As shown in Table 2, the optimization preferences are 
illustrated by the weights learned. The positive weights are 
preferred, and the negative weights indicate that the system 
dislikes observations of the feature. For instance, the sys­
tem likes to see more of the English word "some", hut not 
the word "was"; it likes the rule type "F-X-F-X-F->X-E-X­
E-X", which seems to have more lexical items to bound the 
nonterminals, and it likes less the rule type of "F-X-F-X-F 
-> X-E-X", which seems to have unbounded nonterrninals 
X in the target side. These unbounded nonterminals might 
indicate that the rules were extracted from more ambiguous 
word alignments, and might be less trustworthy in applying 
to the derivations. 

To avoid overfitting, we also try to build tuning data from 
various sources to have a representative tuning set, and re­
duce the risks of overfitting. More details to follow in the 
full version of the paper. 

4.2 Feature Selection 
Overfilling is not always avoidable for t.uning sparse fea­

tures. Besides building relevant tuning set, we carried out 
two simple feature selection strategies. First, we start from 
the full list of the sparse features, which are around 2.7 mil­
lion, and use PRO with SVM to tune all the parameters 
toward BLEU. All the features receiving a weight close to 
zero will then be removed from the list, and the remain­
ing features will be used for the next optimization iteration. 
Iteratively, we keep only the remaining top 300 weighted 
features, which are sprerui among all the seven categories. 
In this process, the top 300 weighted features are selected 
from the optimization process together with the baseline ba­
sic dense features; we further optimize the selected sparse 
features alone by fixing the weights learned for the dense 
features. This seems to be beneficial and more stable for 
the unseen testset , as shown in Table 3. 



Table 2: Features and their weights 
Features Weights Features Weights Features Weights 

WXOWX1W 0.1655 F-X-F-X-F->X-E-X-E 0.2022 SOllle 0.1973 
WX1WXOW 0.1559 F-X-F-X -> E-X-E-X-E 0.2312 an 0.099 

XOWX1 0.0744 X-F-X -> X-E-X-E 0.4769 such -0.0514 
X1XOW -0.0735 F-X-F-X-F -> X-E-X -0.0618 wa.~ -0.0554 

Table 3: Experiments on 
Setup I BLEU I 

Baseline 31.4 
all sparse features 30.4 
300 sparse features 31.6 

updated optimization 32.8 

Table 4: Data 
Word Segmenter I Chinese Tokens English Tokens 

Stanford 38,335,422 44, 289,6.51 
Cambridge 41,151,267 44, 289,u51 

5. EXPERIMENTS 
In our experiments, we mainly use lower-ca.qed BLEU [6J 

for tuning and testing; in our final submission, a truecaser 
that is also trained for the patent domain is applied to the fi­
naloutput. All scores reported are lower-cased scores except 
those mentioned explicitly for mix-cased cases. Our develop­
ment data contains 2000 sentences, and the test set contains 
2000 sentences. We further split the test set into two smaller 
parts to have one development set for LM adaptation. The 
training, test conditions, and om final results are listed in 
the evaluation overview paper [3J. As the monolingual En­
glish data has a size of almost 14 billion running tokens, a 
7-gram LM is learned, and then shrunk using a bloom-filter 
LM; the final LM has a size of 6.2 GB on the disk for final 
evaluation systems. As this LM is large, we also trained an 
LM from the 45M words of the parallel data, and use the 
smaller LM for tuning parameters of our MT engine. The 
large LM is used only for our final system submission, with 
borrowed parameters from the smaller LM setup. 

To speed up the decoding, we applied the pruning of the 
grammars similar to the work in [10]. We cache language 
model ngram queries in a trie, and look inside of the content 
of the English entities ($eng{}) during the decoding. 

5.1 Data 
We used all of the one million parallel training sentences, 

and applied two pipelines of preprocessing using Stanford 
word segmenter and the Cambridge word segmenter. 

The Stanford word segmenter tends to glue pieces into 
long words. The Cambridge one, which is HMM ba.<;ed, usu­
ally breaks long words into shorter ones. As shown in Ta­
ble 4, using Stanford word segmenter, the number of tokens 
is quite far from the number of tokens in English, indicat­
ing that there could be a systematic gap to fill in for the 
alignment model. On the other hand, the Cambridge word 
segmenter seems to generate a reasonable number of tokens, 
and is close to the number of tokens in the target side. 

For two different word segmentations, we run the evalu­
ations on our test set. in Table 5, we can see that the two 

Table 5: Comparision between different word seg­
menters and grammars

I Word Segmenter I Hiero Str-to-DepTree 

I Stanford I 33.3 32.1 
Cambridge 33.6 32.4 

Table 6: System combination over different word 
segmenters and grammars

I Setups Bleu 

word segmenters, however, did not differ much in the final 
translation quality, even though they are much different in 
terms of the vocabulary sizes and the gap between the num­
ber of tokens in the parallel training data. 

5.2 Translation Models 
We built two sets of PSCFG grammars for our evalua­

tion submission: the standard Hiero grammar [2], and the 
string-to-dependency tree grammar [7]. As shown in Ta­
ble 5, the standard Hiero grammar is about 1 BLEU point 
better than the string-to-dependency tree gramIIlar (S2D). 
A closer check showed that the translation output from the 
S2D is shorter than the Hiero output in general for patent 
data. We suspect that the dependency trees we collected for 
patent data might favor shorter and shallow structures. 

5.3 System Combination 
Due to the nature of the similar preprocessing pipelines 

and translation models, our system combination, even though 
it is based on multiple segmentation and grammars, gains 
only a small margin over our best single system, which is a 
Hiero grammar using the Canlbridge word segmenter. Var­
ious systems might bring better performance to the final 
system combinations. 

5.4 Language Model Adaptation 
As patent data is domain specific, we tried to integrate 

language model adaptation into our pipeline, to further boost 
performance. For this experiment, we used slightly differeut 
tuning and test sets. Due to time constraints, the results 
did Hot go into our final submissions. Table 7 showed the 
improvements on top of our best baseline single engine, with 
the Cambridge word segmenter, but using a small language 
model trained with 45M words. We split the 2000 sentences 
development data into a lOOO-sentence tune-set and 1000­
sentence test set. We investigated two approaches for lan­
guage model adaptation. 

SRC-adapt-1passdecode: use the source sentences in one 
document to retrieve the indexed source side of parallel text, 
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Table 7: Language Model Adaptation Results in 
terms of BLEU and TER We observed better TER 
improvements than BLEU over the baseline using 
two adaptation strategies. 

Setups 


Baseline 

TGT-adapt-redecode 


SRC-adapt-lpassdecode 


I Thne Test 

33.27/50.37 32.18/51.46 
33.75/49.84 32.42/50.94 
33.88/49.62 32.54/50.67 

Table 8: Final System Performances on Dev and 
Test data 

Setup I Dev I Test I 
Dense Features 30.1 31.9 
Sparse Features 37.1 31.7 

feature selection-l 3.5.3 32.4 
feature selection-2 35.3 32.7 

train 7-gram adapted LM using corresponding target side 
sentences for each test docnment, and linearly interpolate 
with the 7-gram BGLM (i.e., decoding LM trained on the 
parallel text) and re-decode. 

TGT-adapt-lpa:;sdecode: run Ipa.~s decoding with BGLM, 
use the translation hyps in one document to retrieve the in­
dexed target-side sentences, train 7-gram adapted LM for 
each document and linearly interpolate with the 7-gram 
background LM, and run Ipass decoding. 

For tuning the parameters, we keep the same LM weight, 
and tune on the tune set the threshold of retrieved data, 
and the interpolation weight between adapted LM and back­
ground LM. We observed better TER score improvement 
than BLEU scores. 

5.5 Results 
We carried out two feature selections on building our fi­

nal systems. The first one is to select the top 300 weighted 
features. The second one is to slightly relax the feature elim­
inations in the optimization process, and try to optimize the 
sparse features separately by fixing the weights of the dense 
features; This allows lIS to use a slightly larger feature set, 
which contains about 923 features. In the final submissions, 
we used the second feature selection for single engines, which 
seems to perform slightly hetter than the first one on the un­
seen test set. 

On the unseen testset, we did not observe the significant 
improvement we obtained on the development set, and the 
feature selection based on the development set might be still 
loose to avoid the overfitting. By constructing a relevant 
tuning and development set, we might get better transla­
tions by using sparse features. 

6. 	 DISCUSSIONS AND CONCLUSIONS 
Preprocessing is one of the hurdle in our evaluation sys­

tem, and we observed serious problems in the final transla­
tion output. Simple ngrams LM were applied in our eval­
uation system, and we plan to investigate more structured 
language models to leverage more of the document context. 

Feature selection is another issue in our development. Over­
fitting is observed in our tuning and devset, and the our fea­
ture selection is done in an iterative selection-optimization 
process, that cannot guarantee a converged set of features. 

A better feature selection algorithm may identify the rele­
vant set of features and ease the burden of optimizations. 
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