
SRI Submissions to Chinese-English PatentMT NTCIR10

Bing Zhao

SRI International

333 Ravenswood Ave

Menlo Park, CA 94025

bing .zhao@sri.com

Evaluation

Jing Zheng

SRI International

333 Ravenswood Ave

Menlo Park, CA 94025

jing.zheng@sri.com

Nicolas Scheffer

SRI International

333 Ravenswood Ave

Menlo Park CA 94025

nicolas.scheffer@sri.com

Wen Wang

SRI International

333 Ravenswood Ave

Menlo Park, CA 94025

wen.wang@sri.com

ABSTRACT
The SRI team joined the subtask of Chinese-English Patent
machine translation evaluation, and submitted the transla­
tion results using a combined output from two types of gram­
mars supported in SRlnterp, with two different word seg­
mentations. We investigated the effect of adding sparse fea­
tures, together with several optimization strategies. Also,for
the PatentMT domain, we carried out preliminary experi­
ments on adapting language models. Our results showed
positive improvements using these approaches.

Keywords
machine translation, PatentMT, language model adapta­
tion, sparse features, feature selection

1. INTRODUCTION
The SRI team focused on three basic aspects of patentMT

in a two-week effort. First is the preprocessing of the patent
domain specific data, including word segmentations and named
entity tagging; second, we investigated the effects of lever­
aging sparse features and optimized them for the evalua­
tion task; third, we tried language model adaptation for the
patent domain.

There are many long words/terminology terms in the patent
data, and word segmentation is one key problem of translat­
ing the unknown word or low-frequency terminologies. Two
word segmenters are applied in our system, with minimal ad­
justments of the vocabularies used for the patent data. One
is the Stanford word segmenter [9], and the other is the Cam­
bridge word segmenter. With the word-segmented streams,
we applied the entity tagging using the text normalization
toolkit Datcutr [11]. The formula expressions, new mate­
rials' names, and technical terms in the patent data posed
great challenges in the preprocessing of the patent data, and
the word alignment quality.

Another aspect of the translation in our experiments is
to investigate the sparse features. Feature selection is used,
which is a two-step process, in our empirical experiments to
avoid overfitting, and also to ease the burden of the opti­
mizations. We applied tuning as reranking approach [4], to­
gether with an SVM classifier to tune the parameters. This

margin-based classifier allows a flexible framework for fea­
ture selection and applying priors to the paranl€ters estima­
tions.

We also investigated the effects of language model (LM)
adaptation. Due to time constraints, the results did not
go into our final submission. A subset of data is retrieved
regarding the relevant translations, and a smaller domain­
specific LM is then built. It is interpolated with the big
background LM, and the weights are learned from held-out
data. Overall, we observed a small improvement using the
LM adaptation.

2. PREPROCESSING OF THE DATA
The patent data poses special preprocessing challenges

to the preprocessing process. J'viany times, we found that
mixed regular expressions can cut sentences in half, and
cause serious problems in our system building. Formula,
English expressions such as, "FIG", "Fig.", are mixed with
Chinese character streams, and short-hand representations
of the technical terms. Entity tagging tends to cause se­
rious mistakes in these ca.~es, often breaking things apart,
the alignment suffering from non l-t0-1 mapping between
entities, and finally losing translations for them. The many
UNK words also posed significant challenges to the language
model scoring, which cannot figure out the correct probahil­
ities inside of the tagged entities.

We modified the regular expressions inside the Decatur
pipeline, to mainly accommodate ca.<;es occurring in the patent
Chinese data. Due to the nature of the word segmenters,
we need to modify the MToken inside the Decatur pipeline
to handle the broken segmentations, and try to simulate
the same processing the English-alike tokens in the Chinese
streams. In the end, the Stanford Chinese word segmenter
tends to generates long words, such a.<; Chinese terminolo­
gies, resulting a large vocabulary containing 272K words.
For the Cambridge word segmenter, the resulting vocabu­
lary is much smaller at 101K words, without breaking the
long terminologies into too many small pieces like charac­
ters.

Besides the MToekns as in the Decatur pipeline for tag­
ging numbers and dates, for test data we introduced a special
token called $eng to mark the English tokens in the source

mailto:wen.wang@sri.com
mailto:nicolas.scheffer@sri.com
mailto:jing.zheng@sri.com

Table 1: Sparse Feature Types and Examples
Feat Categories Information I Examples

Lexical if the word-pair is seen in a lexicon f -e
Fertility Source word fertility f - vO, f - vI, f - v2, f - v3+
Rule type Detailed Riero rule types F-XI-F-X2 B XI-E-X2

it the target side contams monotone or reordermg
Reorder type WXOWX1W

rof n"n-terminals
Target spontaneous words Predefined English spontaneous words the, this, such, was...
Bigrams Bigrams seen in the target side of the phrases BI wan~jin-ping
Frequency of rules Bined frequency if the observed rules freql, ... , freqK

language such as "GPS", "LED", and company names such
as "Merck". In the ngram queries for LM probabilities, the
decoding process will look inside of $eng's content for com­
puting probabilities.

3. TRANSLATION ENGINE
Our systems are based on the SRInterp [12], supporting

several PSCFG grammars, including Riero and string-to­
dependency tree. The decoder is chart-based, and standard
CKY algorithms are applied to derive translations from a
packed forest. Several pruning strategies are supported for
speed; consensus decoding and force decoding are also sup­
ported. Multiple types and multiple mixtures of language
models are also supported. In our submission, we applied
Riero-style grammar, and a string-to-dependency tree gram­
mar (S2D), with a considerations of their speed for short
development cycles. In our basic setup, we have about 12
dimensions of features and one single LM. In our submit­
ted system, we chose the sparse feature from the setup, as
descrihed in section 4.

With these two different types of grammar, we applied
a system combination, to combine the outputs from differ­
ent grammars and word segmentations. It turns out the
two grammars are similar in terms of performance for the
developrnent data, and we did not observe significallt im­
provements over the best baseline system.

System combination uses a two-pass alignment algorithm
to generate a confusion network [1] from unique lO-best sys­
tem outputs from each of the systems, and then finds the
final outputs based on a set of features, including system
ID and number of OOVs in the pass, and a language model
estimated from all n-best hypotheses on the test sets. The
feature and language model weights were trained using mini­
mum error rate training [5] with a simplex search algorithm.
The simplex search algoritlun is implemented inside SRILM
[8].

4. SPARSE FEATURES
Sparse features arc introduced to handle the specific errors

in the translation output. In our system, we computed seven
categories of spar,;e features, as listed in Table 1. Some of
the features can be treated as dense, such as the category of
frequency of the rule, but majority of them are sparse.

The lexicon features are derived from the IBM model-I,
in which we check if a word-pair f B e occurs in the deriva­
tion. The fertility features check how many times a word is
aligned to 1 word, 2 words, or 3+ words. The reordering fea­
tures will only check the reordering between nontenninals,
which is basically a simple count of the reorderings in the
derivation tree; the rule type is a more detailed description

of the PSCFG fIlles used, and 38 types of rules are defined
in our system. Several examples together with the weights
are given in Table 2.

We start with a list of 2, 739, 369 sparse features, and run
optimizations and selections iteratively to avoid overfitting.

4.1 Optimization
We chose the tuning-as-reranking algorithm [4J for opti­

mizing the sparse features. We lise the margin-based classi­
fier SVM to leverage the priors for the weights to be learned.
The weights for each feature can be used for a second step of
feature selection. The weights closer to zero, can be safely
discarded in the next iteration for optimization. Empiri­
cally, the weights learned from SVM are also more inter­
pretable than the weights learned from the maxent cia.ssi­
fier. As shown in Table 2, the optimization preferences are
illustrated by the weights learned. The positive weights are
preferred, and the negative weights indicate that the system
dislikes observations of the feature. For instance, the sys­
tem likes to see more of the English word "some", hut not
the word "was"; it likes the rule type "F-X-F-X-F->X-E-X­
E-X", which seems to have more lexical items to bound the
nonterminals, and it likes less the rule type of "F-X-F-X-F
-> X-E-X", which seems to have unbounded nonterrninals
X in the target side. These unbounded nonterminals might
indicate that the rules were extracted from more ambiguous
word alignments, and might be less trustworthy in applying
to the derivations.

To avoid overfitting, we also try to build tuning data from
various sources to have a representative tuning set, and re­
duce the risks of overfitting. More details to follow in the
full version of the paper.

4.2 Feature Selection
Overfilling is not always avoidable for t.uning sparse fea­

tures. Besides building relevant tuning set, we carried out
two simple feature selection strategies. First, we start from
the full list of the sparse features, which are around 2.7 mil­
lion, and use PRO with SVM to tune all the parameters
toward BLEU. All the features receiving a weight close to
zero will then be removed from the list, and the remain­
ing features will be used for the next optimization iteration.
Iteratively, we keep only the remaining top 300 weighted
features, which are sprerui among all the seven categories.
In this process, the top 300 weighted features are selected
from the optimization process together with the baseline ba­
sic dense features; we further optimize the selected sparse
features alone by fixing the weights learned for the dense
features. This seems to be beneficial and more stable for
the unseen testset , as shown in Table 3.

Table 2: Features and their weights
Features Weights Features Weights Features Weights

WXOWX1W 0.1655 F-X-F-X-F->X-E-X-E 0.2022 SOllle 0.1973
WX1WXOW 0.1559 F-X-F-X -> E-X-E-X-E 0.2312 an 0.099

XOWX1 0.0744 X-F-X -> X-E-X-E 0.4769 such -0.0514
X1XOW -0.0735 F-X-F-X-F -> X-E-X -0.0618 wa.~ -0.0554

Table 3: Experiments on
Setup I BLEU I

Baseline 31.4
all sparse features 30.4
300 sparse features 31.6

updated optimization 32.8

Table 4: Data
Word Segmenter I Chinese Tokens English Tokens

Stanford 38,335,422 44, 289,6.51
Cambridge 41,151,267 44, 289,u51

5. EXPERIMENTS
In our experiments, we mainly use lower-ca.qed BLEU [6J

for tuning and testing; in our final submission, a truecaser
that is also trained for the patent domain is applied to the fi­
naloutput. All scores reported are lower-cased scores except
those mentioned explicitly for mix-cased cases. Our develop­
ment data contains 2000 sentences, and the test set contains
2000 sentences. We further split the test set into two smaller
parts to have one development set for LM adaptation. The
training, test conditions, and om final results are listed in
the evaluation overview paper [3J. As the monolingual En­
glish data has a size of almost 14 billion running tokens, a
7-gram LM is learned, and then shrunk using a bloom-filter
LM; the final LM has a size of 6.2 GB on the disk for final
evaluation systems. As this LM is large, we also trained an
LM from the 45M words of the parallel data, and use the
smaller LM for tuning parameters of our MT engine. The
large LM is used only for our final system submission, with
borrowed parameters from the smaller LM setup.

To speed up the decoding, we applied the pruning of the
grammars similar to the work in [10]. We cache language
model ngram queries in a trie, and look inside of the content
of the English entities ($eng{}) during the decoding.

5.1 Data
We used all of the one million parallel training sentences,

and applied two pipelines of preprocessing using Stanford
word segmenter and the Cambridge word segmenter.

The Stanford word segmenter tends to glue pieces into
long words. The Cambridge one, which is HMM ba.<;ed, usu­
ally breaks long words into shorter ones. As shown in Ta­
ble 4, using Stanford word segmenter, the number of tokens
is quite far from the number of tokens in English, indicat­
ing that there could be a systematic gap to fill in for the
alignment model. On the other hand, the Cambridge word
segmenter seems to generate a reasonable number of tokens,
and is close to the number of tokens in the target side.

For two different word segmentations, we run the evalu­
ations on our test set. in Table 5, we can see that the two

Table 5: Comparision between different word seg­
menters and grammars

I Word Segmenter I Hiero Str-to-DepTree

I Stanford I 33.3 32.1
Cambridge 33.6 32.4

Table 6: System combination over different word
segmenters and grammars

I Setups Bleu

word segmenters, however, did not differ much in the final
translation quality, even though they are much different in
terms of the vocabulary sizes and the gap between the num­
ber of tokens in the parallel training data.

5.2 Translation Models
We built two sets of PSCFG grammars for our evalua­

tion submission: the standard Hiero grammar [2], and the
string-to-dependency tree grammar [7]. As shown in Ta­
ble 5, the standard Hiero grammar is about 1 BLEU point
better than the string-to-dependency tree gramIIlar (S2D).
A closer check showed that the translation output from the
S2D is shorter than the Hiero output in general for patent
data. We suspect that the dependency trees we collected for
patent data might favor shorter and shallow structures.

5.3 System Combination
Due to the nature of the similar preprocessing pipelines

and translation models, our system combination, even though
it is based on multiple segmentation and grammars, gains
only a small margin over our best single system, which is a
Hiero grammar using the Canlbridge word segmenter. Var­
ious systems might bring better performance to the final
system combinations.

5.4 Language Model Adaptation
As patent data is domain specific, we tried to integrate

language model adaptation into our pipeline, to further boost
performance. For this experiment, we used slightly differeut
tuning and test sets. Due to time constraints, the results
did Hot go into our final submissions. Table 7 showed the
improvements on top of our best baseline single engine, with
the Cambridge word segmenter, but using a small language
model trained with 45M words. We split the 2000 sentences
development data into a lOOO-sentence tune-set and 1000­
sentence test set. We investigated two approaches for lan­
guage model adaptation.

SRC-adapt-1passdecode: use the source sentences in one
document to retrieve the indexed source side of parallel text,

http:289,6.51

I

Table 7: Language Model Adaptation Results in
terms of BLEU and TER We observed better TER
improvements than BLEU over the baseline using
two adaptation strategies.

Setups

Baseline

TGT-adapt-redecode

SRC-adapt-lpassdecode

I Thne Test

33.27/50.37 32.18/51.46
33.75/49.84 32.42/50.94
33.88/49.62 32.54/50.67

Table 8: Final System Performances on Dev and
Test data

Setup I Dev I Test I
Dense Features 30.1 31.9
Sparse Features 37.1 31.7

feature selection-l 3.5.3 32.4
feature selection-2 35.3 32.7

train 7-gram adapted LM using corresponding target side
sentences for each test docnment, and linearly interpolate
with the 7-gram BGLM (i.e., decoding LM trained on the
parallel text) and re-decode.

TGT-adapt-lpa:;sdecode: run Ipa.~s decoding with BGLM,
use the translation hyps in one document to retrieve the in­
dexed target-side sentences, train 7-gram adapted LM for
each document and linearly interpolate with the 7-gram
background LM, and run Ipass decoding.

For tuning the parameters, we keep the same LM weight,
and tune on the tune set the threshold of retrieved data,
and the interpolation weight between adapted LM and back­
ground LM. We observed better TER score improvement
than BLEU scores.

5.5 Results
We carried out two feature selections on building our fi­

nal systems. The first one is to select the top 300 weighted
features. The second one is to slightly relax the feature elim­
inations in the optimization process, and try to optimize the
sparse features separately by fixing the weights of the dense
features; This allows lIS to use a slightly larger feature set,
which contains about 923 features. In the final submissions,
we used the second feature selection for single engines, which
seems to perform slightly hetter than the first one on the un­
seen test set.

On the unseen testset, we did not observe the significant
improvement we obtained on the development set, and the
feature selection based on the development set might be still
loose to avoid the overfitting. By constructing a relevant
tuning and development set, we might get better transla­
tions by using sparse features.

6. 	 DISCUSSIONS AND CONCLUSIONS
Preprocessing is one of the hurdle in our evaluation sys­

tem, and we observed serious problems in the final transla­
tion output. Simple ngrams LM were applied in our eval­
uation system, and we plan to investigate more structured
language models to leverage more of the document context.

Feature selection is another issue in our development. Over­
fitting is observed in our tuning and devset, and the our fea­
ture selection is done in an iterative selection-optimization
process, that cannot guarantee a converged set of features.

A better feature selection algorithm may identify the rele­
vant set of features and ease the burden of optimizations.

7. 	 REFERENCES
[1] 	 N. F. Ayan, J. Zheng, and W. Wang. Improving

alignments for better confusion networks for combining
machine translation systems. In Pmceedings of the
22nd International Conference on Computational
Linguistics (Coling 2008), pages 33-40, Manchester,
UK, August 2008. Coling 2008 Organizing Committee.

[2] 	 D. Chiang. Hierarchical phrase-ba:;ed translation. In
Computational Linguistics, volume 33(2), 2007.

[3] 	 I. Goto, K. p. Chow, B. Lu, E. Sumita, and B. K.
Tsou. Overview of the patent machine translation task
at the ntcir-lO workshop. In Pmceedings of the 2013
NTCIR Patent MT workshop, Japan, June 2013.

[4] 	 M. Hopkins and J. May. 1\ming as ranking. In
Pmceedings of the 2011 Conference on Empirical
Methods in Nat1LTaI Language Pmcessing, pages
1352-1362, Edinburgh, Scotland, UK., July 2011.
Association for Computational Linguistics.

[5] 	 F. J. Och. Minimum error rate training for statistical
machine translation. In Pmc. of the 41st Annual
Meeting of the Association fo'r Computational
Linguistics, Japan, Sapporo, July 2003.

[6] 	 K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu.
Bleu: a method for automatic evaluation of machine
translation. In Pmc. of the ACL-02), pages 311-318,
Philadelphia, PA, July 2002.

[7] 	 L. Shen, J. Xu, and R. Weischedel. A new

string-to-dependency machine translation algorithm

with a target dependency language model. In

Pmceedings of ACL, 2008.

[8J 	 A. Stolcke. SRILM - An extensible language modeling
toolkit. In Pmc. Intl. Can/. on Spoken Language
Pmcessing, volume 2, pages 901-904, Denver, 2002.

[9] 	 H. Tseng, P. Chang, G. Andrew, D. Jurafsky, and
C. Manning. A conditional random field word
segmenter. In Fourth SIGHAN Workshop on Chinese
Language Pmcessing, 2005.

[10] 	 R. Zens, D. Stanton, and P. Xu. A systematic
comparison of phrase table pruning techniques. In
Pmceedings of the 2012 Joint Conference on Empirical
Methods in N atumi Language Pmcessing and
Computational Natural Language Learning, pages
972-983, Jeju Island, Korea, July 2012. Association
for Computational Linguistics.

[11] 	 B. Zhang and .1. G. Kahn. Evaluation of decatur text
normalizer for langnage model training. In Technical
Repor·t, University of Washington, 2008.

[12] 	 J. Zheng. Srinterp: Sri's scalable multipurpose smt
engine. Technical report, SRI International, 2007.

http:32.54/50.67
http:33.88/49.62
http:32.42/50.94
http:33.75/49.84
http:32.18/51.46
http:33.27/50.37

