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Abstract—This paper compares different approaches for us-
ing deep neural networks (DNNs) trained to predict senone
posteriors for the task of spoken language recognition (SLR).
These approaches have recently been found to outperform various
baseline systems on different datasets, but they have not yet been
compared to each other or to a common baseline. Two of these
approaches use the DNNs to generate feature vectors which are
then processed in different ways to predict the score of each
language given a test sample. The features are extracted either
from a bottleneck layer in the DNN or from the output layer. In
the third approach, the standard i-vector extraction procedure is
modified to use the senones as classes and the DNN to predict the
zero-th order statistics. We compare these three approaches and
conclude that the approach based on bottleneck features followed
by i-vector modeling outperform the other two approaches. We
also show that score-level fusion of some of these approaches
leads to gains over using a single approach for short-duration
test samples. Finally, we demonstrate that fusing systems that use
DNNs trained with several languages leads to improvements in
performance over the best single system, and we propose an
adaptation procedure for DNNs trained with languages with
less available data. Overall, we show improvements between
40% and 70% relative to a state-of-the-art Gaussian mixture
model (GMM) i-vector system on test durations from 3 seconds
to 120 seconds on two significantly different tasks: the NIST
2009 language recognition evaluation task and the DARPA RATS
language identification task.

Index Terms—Spoken Language Recognition, Deep Neural
Networks, Senones

I. INTRODUCTION

In recent years, speech-processing researchers have started
exploring the use of deep neural networks (DNNs) for several
different tasks, including automatic speech recognition (ASR),
speaker recognition and spoken language recognition (SLR).
Perhaps most prominent in the literature is the successful
application of DNNs to ASR, replacing Gaussian mixtures for
modeling the acoustic features (for example, see [1], [2]). In
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SLR, researchers have explored several different strategies for
using DNNs. As we describe in this introduction, the most
successful of these approaches are those based on senone-
driven DNNs. The goals of this work are (1) to compare these
approaches with each other and with a common baseline in a
unified framework, and (2) to propose simple improvements
for these techniques.

New SLR approaches are generally compared with what
is currently considered the state of the art in SLR. This
system consists of extraction of shifted delta cepstrum (SDC)
features followed by i-vector modeling, an approach proposed
for speaker recognition in [3] and first applied to SLR in [4]
and [5]. The i-vectors for the test utterances are then modeled
by standard techniques like the Gaussian backend (GB), neural
network, or logistic regression [4] to produce scores for each
target language.

Three main approaches that use senone-driven DNNs for
SLR can be found in recent literature. The first approach
was proposed by our group in [6], [7] and, in parallel, in [§]
for speaker recognition. In this method, the standard i-vector
technique [3] is modified to use senones as classes instead of
the Gaussians defined by a Gaussian mixture model (GMM)-
based universal background model (UBM). The zero-th order
statistics needed for i-vector extraction are estimated using a
DNN. This approach led to impressive relative gains of more
than 30% on the SLR data from the DARPA RATS program
[7]1. We call this method the DNN/iv modeling approach.
To our knowledge, results from this approach on the more
standard language recognition data from the NIST evaluations
have not yet been published.

The second approach, which we call DNN/post, was pro-
posed more recently by our group. It uses the DNN output
layer to create features for language recognition. The posteri-
ors for each senone at each frame are processed to generate
a single vector per utterance, which is then modeled with
standard backend techniques ([7], [9]). Again, this approach
had only been tested on RATS data until this study.

A third approach, first proposed for SLR in [10], is to
train a DNN with a bottleneck architecture and then use the
outputs of the bottleneck layer as features within an i-vector
framework. In the aforementioned work, the DNN is trained
to predict the phone posteriors using 1000 hours of Mandarin
data. The authors show impressive gains with respect to a state-
of-the-art SDC i-vector system on the NIST 2009 Language
Recognition Evaluation (LRE) data. A more recent publication
from the same author [11] explores the different parameters of
the proposed system, including a fusion of the Mandarin-based
DNN system with an English-based DNN system, showing
gains from the fusion of between 7% and 18% for the different



test conditions.

This approach was also proposed, almost in parallel, in
[12]. In this case, the authors test on the RATS program data,
training the DNNs on two languages, Farsi and Levantine
Arabic, to predict posteriors for both context-independent and
context-dependent phones. They show significant gains from
using context-dependent phones and from fusing systems that
use the two different DNNs. They also propose an approach
where two DNNGs are stacked: the bottleneck features from the
first DNN over a context of 10 frames are used as input for a
second DNN with the same architecture as the first one. They
show relative gains of 4% and 10% in the 3- and 10-second
conditions, respectively, from the stacked approach compared
with the single-DNN approach. In this work, we focus on
the single-DNN approach for simplicity. We call the features
extracted from the bottleneck layer deep bottleneck features
or DBFs.

All these approaches have shown significant gains over
well-established state-of-the-art systems. Unfortunately, results
from the various approaches cannot be compared across papers
for a few reasons. First, all these approaches rely on using
DNNSs trained to predict phone-related units. Different groups
are using different data to train these DNNs, making the results
incomparable. Second, the features that are used as input to
the DNNs are also different, adding another variable that is
likely to affect results. Third, the baseline results are different
across groups, making the relative gains less meaningful when
compared across papers. Finally, the two tasks that are mostly
chosen as test data, RATS SLR and LREQ9 are quite different
from each other. While the RATS data is extremely noisy
and distorted, the LRE data is much cleaner and includes
only telephone-bandwidth data. Further, the RATS SLR task
comprises only 5 target languages, while the LREQ9 task
includes 23 languages with an extremely unbalanced number
of samples per language in the training data.

We believe it is important to test whether the gains obtained
on one of the tasks also hold on the other task, and to compare
the approaches within each task in a single development
environment where most variables are kept unchanged. Fusion
experiments across approaches are also missing from current
literature. We believe we are in a great position to perform
these comparisons, given that our DNN-based results have
proven to be outstanding for both SLR and speaker recognition
tasks. A number of techniques highly related to the ones
described above will not be included in this study. Below, we
briefly describe them and justify our decision to leave them
out of this work.

The work in [13] proposed directly modeling language
posteriors with a DNN. In this approach, perceptual linear
prediction (PLP) features are used as input to a DNN trained
to predict the target languages, and, optionally, an out-of-set
class. The authors reported, during the oral presentation of
their work, that this approach is inferior to using bottleneck
features within a standard i-vector modeling framework. For
this reason, we do not include results for this approach in this
paper.

Another approach, highly related to the DNN/post and DBF
approaches above, was proposed earlier in [14]. In this work,
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a NN is used to predict phone-level posteriors (around 50
units, depending on the language) at a frame level; these
posteriors are then converted into log-likelihood ratios (LLRs).
These LLRs are used to extract i-vectors, which are then
modeled using a Gaussian backend. This approach is similar
to DNN/post in that it uses the output layer of a NN, and
similar to DBF in that it models features extracted from
phonetically-driven DNNs using an i-vector approach. Results
are approximately 10% better than the baseline SDC i-vector
system on the 30-second test condition of LRE(9, a relative
gain significantly smaller than what we obtain on the same task
for the DNN/post and DBF systems. Further, as shown in [12],
using a DNN trained to predict context-dependent phones like
the senones we use in this work is clearly better than using a
DNN trained to predict context-independent phones. For these
reasons, we do not include a comparison to this system here.

Finally, the DNN/post approach, which models the senone
posteriors over the whole utterance, can be considered a
phonotactic approach. Phonotactic approaches attempt to
model the permissible combinations of phones and their fre-
quencies in the languages of interest. Standard phonotactic
approaches involve collecting the probabilities for phone se-
quences as a representation of the signal by using the output of
one or several open-phone loop recognizers ([15], [16], [17]).
Language models or support vector machines are then used to
generate the final scores. Another phonotactic approach uses
the phoneme posteriogram counts from the phone recognizer
to create bigram conditional probabilities, which are then used
to create features for SLR (e.g., [18]). These phonotactic
approaches work with a relatively small set of units (usually
approximately 50) representing the individual phones of the
language being modeled. Information about the frequency of
different phone sequences is collected through n-gram gen-
eration. The best phonotactic approaches perform somewhat
worse than the current state-of-the-art systems. The DNN/post
approach, on the other hand, clearly outperforms current state-
of-the-art systems and is much simpler than those approaches
in that it does not require explicitly generating n-grams and
the subsequent selection usually needed for computational
reasons. Hence, we will not include a comparison to these
older phonotactic approaches.

The current work presents a careful comparison and analysis
of the selected approaches described above and their fusion.
We present results on the LREQ9 task, selected for being
a standard in the SLR literature against which most groups
will be able to compare. For this task, for which the training
data is highly language-imbalanced, we introduce a weighted
Gaussian backend that results in consistent gains over the
standard Gaussian backend. We compare and fuse systems
from the three approaches using DNNs trained with data
from four languages: English, Spanish, Mandarin Chinese, and
colloquial Egyptian Arabic. For the last three languages, which
have much less data available than English, we propose an
adaptation technique for the DNN that results in large gains in
SLR performance. Finally, we also show results on the RATS
task, demonstrating that the main conclusions carry over across
these two very different datasets. Both the weighted Gaussian
backend and the DNN-adaptation technique applied to SLR
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tasks are novel contributions of this paper.

The rest of the paper is organized as follows. Section II de-
scribes the technology underlying the DNN-based approaches
that will be explored in this paper. Sections III and IV describe
the setup and results obtained for the LRE09 and RATS SLR
tasks, respectively. We present our conclusions based on these
results in Section V.

II. BACKGROUND AND SYSTEM DESCRIPTIONS

With the exception of the baseline, all approaches compared
in this paper rely on DNNs trained to predict the posterior
probability of senones at the frame level. The following
sections first explain what senones are, how DNNs are used
to estimate their posterior probabilities given a set of features,
and how these DNNs are trained. We then describe the features
that can be derived from these DNNs and the two i-vector
approaches used in this work: the standard one and the one
based on DNN posteriors. Finally, we present the backend
and calibration techniques used for all systems, and we give a
summary of the architecture of each of the compared systems.

A. Senone-Driven DNNs

This section defines the concept of senones and explains
how their posteriors are calculated by using a DNN and how
these DNNs are trained.

1) Senone Definition: Senones are defined as states within
context-dependent phones. Senones are the unit for which
observation probabilities are computed during ASR. The pro-
nunciations of all words are represented by a sequence of
senones Q. In general, the senone set Q is automatically
defined by a decision tree [19]. At every node, a question is
asked from a predefined set that includes questions about the
left and right context, the central phone, and the state number.
An example question could be: “Is the phone to the left of this
central phone a nasal?”” The decision tree is grown in a greedy,
top-down manner by selecting at each node the question that
gives the largest likelihood increase, assuming that the data on
each side of the split can be modeled by a single Gaussian.
The leaves of the decision tree are then taken as the final set
of senones. An example of a senone could be the first state of
all triphones where the central phone is /iy/, the right context
is a nasal, and the left context is /t/.

2) Senone Posterior Estimation Using a DNN: Tradition-
ally, a GMM was used to model the likelihood of the senones
p(z|q) for ASR. Recent studies have shown that DNNs can be
successfully used to estimate the senone posteriors p(g|x) at
the frame level, which are then converted into likelihoods us-
ing Bayes rule. This practice has significantly improved ASR
performance relative to traditional GMM-based systems ([1],
[2D.

As described in the introduction, senone-driven DNNs have
recently also been applied to the SLR task using different
approaches. Different input features have been used in these
studies. In [10], 39-dimensional MFCC features plus 4 pitch
features over 10 frames are concatenated and used as input to
the DNN. In [12], frequency-domain linear prediction features
are used as input to the DNN. The goal of this paper is not to

optimize the input features to the DNN, but rather to compare
SLR methods, given a certain DNN architecture and input
feature set. For this reason, we simply use the standard features
used in ASR for senone posterior estimation by DNNGs: the log
mel-filterbank coefficients over some context given by a few
frames around the target frame.

In this paper, we consider two approaches for senone poste-
rior estimation: multilayer perceptron and convolutional neural
network. Nevertheless, one could consider using other deep
learning techniques that have been shown to give excellent
performance in ASR, such as deep convex networks (DCN:s,
[20], [21]) and long short-term memory recurrent neural
networks (LSTM RNNs, [22]). Systems based on posterior
probabilities from the last layer would remain unchanged when
using these alternative approaches for the estimation of these
posteriors. Extraction of bottleneck features for these cases,
though, would be a research question.

3) DNN Architectures: We use two DNN architectures in
this study. The full architecture is a multilayer perceptron
containing N hidden layers of the same size and an output
layer with one node per senone. The bottleneck architecture
contains N hidden layers where the second-to-last hidden layer
is much smaller than the others.

For the RATS experiments, we use convolutional DNNs
instead of standard DNNs, because convolutional DNNs were
found to give improvements in ASR and speaker verification
performance relative to standard DNNs in noisy data. The first
layer in a convolutional DNN consists of one or more convo-
lutional filters followed by max-pooling. The output of each
convolutional filter is a single vector whose components are
obtained by taking a weighted sum of several rows of the input
matrix. After the convolutional filters are applied, the resulting
vectors go through a process called max pooling by which the
maximum value is selected from N adjacent elements. The
output vectors of the different filters after max pooling are
concatenated into a long vector that is then processed by the
rest of the hidden layers, which are identical to those used in
the standard full or bottleneck DNN architectures. For more
details on convolutional DNNs, see [23].

4) DNN Training: The DNNs are trained using alignments
provided by a standard HMM-GMM ASR system where the
states in the HMM are given by the senones defined by the
decision tree for the target language. This system is used to
align the data to the available transcriptions, resulting in a
senone assignment for each frame. This assignment is used as
the label during DNN training. Training is performed using a
backpropagation algorithm, with small mini-batches and cross-
entropy as the error metric.

5) DNN Adaptation: DNN training requires large amounts
of data to achieve good performance. In this study, we use an
adaptation technique for training the DNNs for low-resource
languages. With this approach, a DNN trained with data
from a language with sufficient resources is used to initialize
the parameters of the DNN for the low-resource language.
Because the last layer is language-specific (the nodes are the
senones obtained with the decision tree corresponding to the
language), this layer is discarded and replaced with a layer
corresponding to the senones for the target language with



randomly initialized parameters. Backpropagation is then run
with the data from the target language until convergence,
using L2 regularization on the network’s parameters to avoid
overfitting to the small amount of available training data.

B. DNN-Based Features

The DNNs described above can be used to extract the two
new sets of features recently proposed in the SLR literature.

1) Deep Bottleneck Features (DBFs): These features are
simply the linear outputs of the bottleneck layer in a bottleneck
DNN. They are frame level and relatively low dimensional.
These features can be modeled like any other standard feature
used for SLR (such as the MFCCs, PLPs, or SDCs) with the
standard GMM-based i-vector approach. Further, as we will
show, we can also model them with our proposed DNN-based
i-vector approach.

2) Posterior features (DNN/post): The extraction procedure
for the DNN/post features was first proposed in [7], [9]. Given
a speech sample ¢, a DNN is used to generate the posteriors
v4(2,t) for every senone ¢ and every frame ¢ in the sample.
The features are based on smooth counts provided by the
DNN, computed as

Coi) =Y (ist), g€ Q (1)

teT

The set of frames 71" can be either all frames or only speech
frames as defined by a separate speech activity detection
(SAD) system. The set () can include all senones or just those
senones that correspond to speech states. The discarding of
non-speech senones can be interpreted as a form of smooth
SAD, because hard labeling of frames as speech or non-speech
is not required. In [9], we found that including all frames in the
computation of C, and discarding the non-speech senones was
the optimal approach. We have also confirmed this to be the
case for the LREO9 data. Hence, in this study, the DNN/post
features are always computed by using this procedure.

The final features are obtained by normalizing the above
counts and taking the logarithm:

Zy(i) = log <2:C;(ZC)’S(1)> , 4 € Q. )

When @ is the set of speech senones only, the denominator
in this equation is a smooth measure of the number of
speech frames within set 7. The value inside the log is a
probability distribution over g. This value can be interpreted
as an estimation of the posterior probability of each senone in
@ for the language present in sample .

The dimension of the resulting vector is equal to the size
of the set (), which can be much larger than the usual size
of the i-vector modeled by standard backend approaches for
SLR. In our first paper proposing this approach, we used
probabilistic principal component analysis (PPCA) [24] to
reduce the dimension of the feature vector to a size more
similar to that of i-vectors. Nevertheless, in [9], we found that
this step only hurts performance. Later, this finding was also
confirmed for the LREQ9 data. Hence, here we directly model
the Z(i) vector defined above.
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C. GMM-Based and DNN-Based i-Vector Extraction

In the i-vector model [3], the ¢-th speech frame xgi) from
the i-th speech segment is assumed to be generated by the
following GMM:

xS ANy + Trw® 3y) 3)
k

where the indices k are the components in the mixture (or,
as we will call them, the classes); the T matrices describe
a low-rank subspace (called the total variability subspace) by
which the means of the Gaussians are adapted to a particular
speech segment; w(¥) is a segment-specific, normal-distributed
latent vector; p;, and X, are th§: mean and covariance of the
unadapted k-th Gaussian; and ’y,i? encodes the soft assignment
of sample ¢ to class k at time {. In general, we compute
the assignments as the posterior of the k-th class, given the
features. The i-vector used to represent the speech signal is
the maximum a posteriori (MAP) point estimate of the latent
vector w (),

Equation (3) models a process by which the feature vec-
tor for time ¢ is generated by first choosing a class k
according to the distribution 71(;:) and then generating the
features according to the Gaussian distribution for that class,
N (g, + Trw' 3y). Note that the classes can be defined in
any way, subject to the theoretical restriction that they have a
Gaussian distribution.

Given a speech segment, the following sufficient statistics
can be computed using the posterior probabilities of the

classes:
ND - 3o
t
t
i MONMOK
s = Y aialal? (4)
t

These sufficient statistics are all that is needed to train the
subspace T and extract the i-vector w(?). Though the training
of T requires an iterative algorithm, i-vector extraction is done
with a closed-form expression that is a function of the statistics
in Equation (4) and the p;, in Equation (3) (the formula can
be found in [3], Equation (6)). The reader is referred to [3]
and [25] for more details. .
Until now, we have not yet explained how the fy,(c? are
obtained. In fact, the i-vector approach does not directly define
how these values should be computed. In the standard GMM-
based i-vector approach, we compute these values as the pos-
terior of the k-th Gaussian, computed from the likelihood of
each Gaussian by using Bayes rule to turn them into posteriors.
This approach ensures that the Gaussian approximation for
each class is satisfied (by definition). In [6] we proposed a
new approach for computing these posteriors by redefining the
classes K to be the senones, rather than the Gaussians in a
GMM. The outputs of a DNN trained to estimate the posteriors
for each of the senones are then used as the s in Equation (4).
We tested this approach for speaker recognition and for SLR,
and showed significant gains over the GMM-based i-vector
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extraction. In this approach, we make the assumption that the
features for each of these senones can be accurately modeled
by a single Gaussian. While this assumption is strong, our
results using this approach indicate that it is a reasonable one.

Figure 1 presents a flow diagram of the proposed DNN-
based i-vector hybrid framework compared to the standard
GMM-based i-vector framework.

UBM-based i-vector extraction

Dlh, lst
order stats

Stats
calculation

i-vector
extraction

DNN-based i-vector extraction

0™ order

DNN stats
evaluation

Senone posteriors i-vector

extraction
1% order

stats

1% order stats
calculation

Fig. 1: Flow diagram of the GMM-based and the DNN-based
i-vector approaches.

D. Backends and Calibration

In the RATS SLR task, several groups, including our own,
found that a neural network outperformed other backends
([12], [26], [27]). Nevertheless, based on our own experience
and that of other groups ([26], [28]), the success of the NN
depends on having a large amount of training data for every
target language. This is not the case for the LREO9 task. In
fact, in our work with LREQ9 data, we have found repeatedly,
in both published and unpublished work, that the NN fails to
give improvements over simpler approaches like the Gaussian
backend [28]. For this reason, in our experiments, we use a NN
backend for the RATS experiments and a Gaussian backend
for the LREO9 experiments.

The Gaussian backend (GB) represents the state of the art in
i-vector scoring for language recognition and was widely used
in recent NIST Language Recognition Evaluations [29]. In the
GB, a Gaussian distribution is estimated for each language,
with covariance S shared across languages and language-
dependent mean m; by maximizing the likelihood on the
training data. The scores are computed as the likelihood of
the samples given these Gaussian models. For details on GB
scoring with i-vectors see [4].

Since the Gaussian backend is used for the LREQ9 task,
for which training data is severely language-imbalanced, we
developed a modification of the Gaussian backend approach
where samples are weighted during the computation of the
means and covariance of the model. Specifically, m; and S

are computed as

sy e
2ifit=1 w®

> Zm(i):z w® (w® — m)T (w® —my)
S = , (5)
> w®

where w(® is the i-vector for sample 4, [() is the language
present in the sample, and w( is the weight assigned to the
sample. If all weights are set to the same value, these equations
coincide with those of the standard Gaussian backend. In our
work, the weights are computed such that all samples from
a language are weighted equally (w® = w@) if () = [0))
and the sum of their weights is identical across languages
(Ziu(i):l w® is the same for all /). Note that the sum of the
weights does not affect the estimated parameters, because the
language-dependent means and covariance matrix (Equations
5) only depend on the relative value of the weights. We call
this backend the weighted Gaussian backend. This backend
coincides with the standard Gaussian backend when all lan-
guages have the same number of samples, because the weights
would be identical for all samples in that scenario.

The NN backend we use in our RATS experiments consists
of a single hidden layer with 400 nodes. The activations in
all layers except the last are given by hyperbolic tangent
functions. In the output layer, sigmoid activations are used
with one node for each target language and an additional node
for the non-target language class. The NN is trained by using
a backpropagation algorithm to maximize cross-entropy.

In this paper, we focus on the language detection task
where, for each test sample, the system has to answer the
question: “Does this sample correspond to class X?” For
LREQ09, we consider the closed-set condition, which was the
primary condition during the evaluation. For RATS, we present
open-set results, as this was the task used for evaluations.
As for any detection task, optimal decisions can be made
by using Bayesian decision theory if the system outputs are
log-likelihood ratios (LLRs) of the null and the alternative
hypothesis. LLRs can be easily obtained from the likelihood
of each class given the sample [30]. Because the backends
described above do not necessarily generate proper likelihoods
with which to compute LLRs, a final calibration step is done to
transform the scores generated by the backend into likelihoods.
This transformation is done using multiclass logistic regression
as described in [31]. Finally, detection LLRs are computed
from the likelihoods as described in [30]. Decisions are
made by thresholding these LLRs at the theoretically optimal
threshold for the cost function defined in the LRE0O9 evaluation
plan [32]. We use this cost function, commonly called Cavg
(since it is an average cost across languages), multiplied by
100, to report results.

m; =

E. Architecture of the Systems under Study

Here we summarize how the techniques described above
are combined to create each of the systems under comparison.
In all cases, the resulting vectors are modeled with a GB
or NN backend (depending on the task) and calibrated using



the multiclass logistic regression procedure described above.
To avoid redundancy, these steps are not mentioned in each
system description.

In all system names below, the key lang specifies the
language with which the DNN was trained and the key feat
specifies the feature used for i-vector extraction.

Jfeat GMM/iv: Features are processed by the standard i-vector
extraction procedure based on a GMM. This approach is
currently used as baseline in most SLR papers.

feat DNN-langliv: Features are processed by the proposed
DNN-based i-vector extraction procedure. For this system, the
full DNN architecture is used, as it leads to slightly better
frame-level accuracy in senone prediction than the bottleneck
architecture.

DBF-lang GMM/iv: A bottleneck DNN trained with language
lang is used to extract the bottleneck features, which are then
modeled with the standard GMM-based i-vector procedure.
DBF-lang DNN-langl/iv: A bottleneck DNN trained with
language lang is used to extract the bottleneck features, which
are then modeled with the DNN-based i-vector procedure. The
full DNN architecture is used for the modeling step.
DNN-lang/post: A DNN is used to estimate senone posteriors
for each frame; posteriors are then processed as described in
II-B2 to obtain a single vector per sample that is then modeled
with a backend identical to the one used to model the i-vectors
from all previous systems. Unless otherwise indicated, the full
DNN architecture is used for this system.

When systems that use DNNs trained with different lan-
guages are fused at the score level, we prepend the word
parallel to the name of the system to denote the fusion system,
as this approach resembles the familiar parallel phonetic
recognition approach ([15], [16]). For example, the parallel
DNN/post system is a fusion of two or more DNN-lang/post
systems.

For all RATS experiments, all DNNs are replaced by
convolutional DNNs (with or without a bottleneck layer). We
keep the DNN nomenclature in all cases for simplicity.

III. LREO9 EXPERIMENTS

This section describes the LRE0Q9 dataset, the system con-
figuration used for the experiments, and results on various
systems that demonstrate the value of using senone-driven
DNNs for language identification under the relatively clean
conditions present in this dataset. We also show the advantage
of using the modified Gaussian backend proposed here, as well
as the adaptation procedure for DNNs trained with languages
with a small amount of training data.

A. Dataset and System Configuration

The LREO9 data includes 23 target languages. We focused
on the closed-set condition, where all test samples belong to
one of the 23 target languages with no out-of-set samples.
The test data offers a relatively balanced number of samples
per language, between 878 and 2976, for a total of 31,178
samples. Three test conditions are defined with test sample
durations of approximately 3, 10 and 30 seconds.
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The training data for the GMMs, i-vector extractor and
backends for all systems was extracted from CallFriend,
NIST LREO3, NIST LREO5, NIST LRE(O7, and VOA3, and
contains a very unbalanced representation of the 23 target
languages, ranging from 100 to 7275 samples per language.
The training samples were restricted to contain at least four
seconds of detected speech. All GMMs had 2048 components
with diagonal covariances. The i-vectors were all of dimension
400, regardless of whether they were estimated by using the
GMM/iv or the DNN/iv approaches. All systems were gender-
independent in all their components.

For the LREQ9 experiments, the spectral features used for
the baseline system and the DNN/iv approach were shifted-
delta cepstrum (SDC) features given by mel-frequency cepstral
coefficients (MFCC) features of 7 dimensions appended with
7-1-3-7 shifted delta cepstra [33], resulting in a final vector
of 56 dimensions. These features were pre-processed with
signal-level mean and variance normalization before i-vector
extraction.

DBFs were obtained by using the DNNs described below.
These features were normalized the same way as the SDC
features before i-vector extraction.

We used a GMM-based speech activity detection (SAD)
system. Two GMMs, one for speech and one for non-speech,
were trained using MFCCs of 12 dimensions plus energy,
deltas, and double deltas. These GMMs were trained using
data from Fisher 1 and 2, Switchboard phase 2 and 3, Switch-
board cellphone phase 1 and 2, and Mixer data. Simulated
noisy signals were also used for training. These signals were
created by starting from a subset of clean-microphone data
from the Mixer collection and by adding HVAC and babble
noise as described in [34]. The annotations used for training
were generated by our previous SAD system which consisted
of a speech/non-speech hidden Markov model (HMM) decoder
and various duration constraints. In testing, the LLR of the
speech versus non-speech GMMs was found for each frame.
Finally, a median filter of 21 frames was used to smooth the
obtained LLRs. Frames with a smoothed LLR above 0 were
declared speech.

The SLR training data described above cannot be used
for DNN training because it does not include transcriptions.
Hence, for this purpose, we used data from different English
(eng), Mandarin (man), Spanish (spa), and colloquial Egyptian
Arabic (cea) collections for which transcriptions are available.
The English data came from the Fisher, CallHome, and
Switchboard collections; the Mandarin data came from the
CallHome, CallFriend, and the 2004 Rich Transcription eval-
uation collections; and the Arabic and Spanish data came from
the CallHome collection. These collections contain speech
collected over a telephone channel. The number of hours of
data available for each language was 1300, 102, 18, and 16
for English, Mandarin, Spanish and Arabic, respectively.

The senones for which posteriors are predicted by the DNN
are language-dependent and were automatically defined by
using the decision tree procedure described in Section II-Al
using the data and phoneset for that language. We set the
number of senones at approximately 3500 for the eng and man
DNNs, and at approximately 1500 for the spa and cea DNNSs,
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due to the smaller amount of data available for training. The
exact numbers were defined during decision tree training and
were 3450 for eng, 3682 for man, 1618 for spa, and 1573 for
cea. A larger number of senones for the eng DNN resulted in
small degradations in SLR performance at short test durations.
The DNNs contained 5 hidden layers with 1200 nodes each,
except for the bottleneck DNN, which contained only 80 nodes
in the bottleneck layer and 1200 in all the other layers. The
size of the bottleneck layer of 80 was found to be optimal
in [12], a fact that was also confirmed by our experiments.
The input features to the DNNs were given by 40 log mel-
filterbank coefficients with a context of 7 frames on each side
of the center frame for which predictions were made.

The alignments used to train the DNNs were obtained
with an HMM-GMM ASR system with 200k Gaussians that
were trained to maximize the likelihood of the same data
used to train the DNNs. The features used in the HMM-
GMM model were 39-dimensional MFCC features, including
13 static features (including CO) and first- and second-order
derivatives. The features were pre-processed with speaker-
based mean and covariance normalization (MVN).

Gaussian backends were used for these experiments, as de-
scribed in Section II-D. The scores generated by the backends
were further calibrated through multi-class logistic regression
using two-fold cross-validation on the test data.

B. System and Backend Comparison Using English-Trained
DNNs

In this section we compare the five systems described in
Section II-E when a DNN trained with English data is used
for the systems that require it. Figure 2 shows the Cavg
results for the five systems with standard (dark bars) and
weighted (lighter bars) Gaussian backends. We see that the
weighted backend gives a consistent improvement across all
systems and durations, with the only exception being the
three-second condition for the DNN/post system. Given this,
all LREQ9 results in the subsequent sections will use this
weighted backend. The figure also shows that the DNN/iv
approach with SDC features (red bars) does not outperform the
baseline GMM/iv system (blue bars) using the same features.
Nevertheless, the other DNN-based approaches outperform the
baseline in most conditions. In particular, the approaches based
on bottleneck features greatly outperform all other approaches.
As for the SDC features, though, DNN/iv modeling does not
outperform the GMM/iv modeling of the bottleneck features.
However, the relative difference between these systems is
considerably smaller.

C. Effect of the Bottleneck Layer on the DNN/post System

In the previous section we showed results using two differ-
ent DNNs: one with a bottleneck layer to extract the bottleneck
features, and one standard DNN with all hidden layers of the
same size for the DNN/iv and the DNN/post approaches. A
question arises, therefore, as to whether the bottleneck DNN
can be used for these last two approaches instead of the full
DNN. Is anything lost when using a bottleneck layer in the
DNN? To answer this question, we ran the DNN/post approach

18 B SDC GMM/iv (1)

16 B SDC DNN-eng/iv (2)

14 M DNN-eng/post (3)

12 B DBF-eng GMM/iv (4)

10 B DBF-eng DNN-eng/iv (5)

o N B O

Fig. 2: Cavgx100 for LREQ9 for the five systems described
in Section II-E using English-trained DNNs. Dark bars corre-
spond to the systems that use a standard Gaussian backend.
Lighter bars beside each of the dark lines of the same
color correspond to the same system but using the weighted
Gaussian backend.

using a bottleneck and a full DNN. Results indicate a modest
relative loss in performance of 3% when using the bottleneck
DNN for this system instead of the full DNN at 3-second test
durations, while no difference in performance is observed for
10- and 30-second test conditions.

The fact that the loss is so small implies that the bottleneck
layer does not significantly hinder the DNN/post features. This
might mean that the bottleneck layer is able to convey all
the information needed to extract the posteriors in the output
layer. If this is the case, the DBFs have an advantage over
the DNN/post features in that they are lower-dimensional and
can be modeled with the i-vector approach, which enables
for a much more complex representation of the empirical
distribution present in the samples. Though the DNN/post
features model the empirical distribution by the mean over the
frames, the i-vectors obtained from DBF features model the
distribution through the deviations of the means of a GMM.

On the other hand, the small loss in performance observed
on the DNN/post system when using a bottleneck DNN might,
in fact, be due to the lack of complexity in the representation
of the DNN/post features. The frame-level features from the
full DNN might have more information than those from the
bottleneck DNN, but our simple feature-extraction procedure
that is based on the mean over the frames is unable to use of
this information. This is something we plan to investigate in
the near future.

D. Use of Different Languages for DNN Training

For the LRE task, we have four transcribed datasets with
acoustic conditions similar to those present in the evaluation
data (telephonic speech). As mentioned in Section III-A, the
size of these datasets is very different, ranging from 1300
hours for the eng dataset to 16 hours for the cea dataset.
In this section, we explore the use of these datasets for
training the DNNs to be used for the DNN/post and DBF



GMM/iv approaches. We show results when using adaptation
for DNN creation for the three languages with fewer resources.
The DNNs for these languages are adapted to the English
DNN by using the procedure described in Section II-AS. The
regularization parameter was loosely calibrated on the DNN-
cea/post system to a value of 0.01. All other systems use this
same setting without recalibration.

Figure 3 shows the results for the DBF GMM/iv system
when using bottleneck DNNs trained with eng, man, spa
and cea. For the last three languages, results without DNN
adaptation (dark bars) and with DNN adaptation (lighter bars)
are shown. We can see that the performance of the systems
that use unadapted DNNss directly relates to the amount of data
available for training the DNN. Nevertheless, after adaptation,
this correlation disappears: all systems reach approximately
the performance of the one that uses the DNN trained on
English, independent of the amount of data available for the
target language. This result is despite the fact that the number
of senones for spa and cea is approximately 1500 (even when
adaptation is done) and approximately 3500 for man and eng,
which confirms that SLR performance is not overly sensitive
to the number of senones predicted by the DNN. Finally,
we show the score-level fusion of the systems that use the
eng DNN and the adapted man, cea and spa DNNs. The
fusion, which we will call the parallel DBF GMM/iv system,
leads to a relative improvement over the eng-only system of
12%, 13%, and 6% for the 3-, 10-, and 30-second conditions,
respectively. These relatively small gains in fusion, and the
fact that performance with the adapted DNNSs is quite similar
across languages, might indicate that bottleneck features are
relatively independent of the language with which the DNN
is trained.

14 HMeng (1)
[
12 cea (2)
Hspa(3)
10 M man (4)
8 M fusion (5)
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Fig. 3: Cavgx100 for LRE09 for different DBF GMM/iv
systems using DNNs trained with different languages. For
man, cea, and spa, two bars are shown. The darker bar
corresponds to a system that uses a DNN trained directly on
the data from the language. The lighter bar to the right of each
darker bar corresponds to a system that uses DNNs adapted
to the eng DNN. The last bar corresponds to the fusion of
the systems that use the eng DNN and the adapted DNNs for
man, cea, and spa.
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Figure 4 shows the results for the DNN/post system when
using the DNNSs trained on the four languages, with and with-
out adaptation. The conclusions for this system are identical
to those for the DBF GMM/iv systems above: (1) performance
of systems that use unadapted DNNs is directly related to the
amount of training data for the language used for training,
and (2) adaptation brings the Cavg to the same level achieved
with the eng DNN. The only difference here is that the fused
system, which we will call the parallel DNN/post system,
leads to much bigger relative gains with respect to the system
that uses the eng DNN, of 39%, 48%, and 34% on the
3-, 10-, and 30-second conditions, respectively. These larger
gains might indicate that posterior features are inherently more
language-dependent than bottleneck features. If this was the
case, and we could find a way of modeling the output layer of
the DNN that led to better individual performance, perhaps
their fusion could outperform the fusion of DBF systems.
On the other hand, perhaps the larger correlation between
DBF language-dependent systems than between DNN/post
language-dependent systems, which leads to the smaller gain
in fusion, might be an artifact of our adaptation procedure.
Because the bottleneck layer is initialized with the parameters
of the eng DNN, the DBFs of the adapted DNNs are biased
toward those of the eng DNN. This is not the case for the
output layer, which is trained from scratch on the adapted
DNNs. We plan to look into all these issues in our future
research.

20 Heng (1)
18 Hcea(2)
16 " spa (3)
14 ®man (4)
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Fig. 4: Cavgx 100 for LREQ9 for different DNN/post systems
using DNNs trained with different languages. See caption in
Figure 3 for the meaning of the bars.

E. Summary of Results

Figure 5 shows three individual systems from Figure 2
(lighter bars), selecting the ones that use a weighted Gaussian
backend and discarding the ones that use DNN/iv modeling,
as this approach does not lead to gains over using GMM/iv
modeling on this task. The figure also shows the fused systems
in Figures 3 and 4 (darker bars), the parallel DBF GMM/iv
and parallel DNN/post approaches. Finally, it shows the results
when fusing all eight systems involved in those two fusions,
or only the two systems based on eng DNNs. We can see
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16
B SDC GMM/iv (1)
13.9

14 M DNN/post (2)
12 B DBF GMM/iv (3)
B DBF GMM/iv + DNN/post (4)

10

Fig. 5: Cavgx100 for LREQ9 for different individual ap-
proaches and their fusion. For the DNN-based systems, two
bars are shown: the lighter one to the left corresponds to a
system that uses only the eng DNNs, while the darker one to
the right corresponds to the parallel system (that is, a score-
level fusion of systems using DNNs trained with different
languages (eng, cea, spa, and man)).

System 3sec 10sec  30sec
SDC GMM/iv 13.85  4.86 2.69
DNN-eng/post 14.18 4.6 1.86
DNN-*#%/post 8.63 2.38 1.22
DBF-eng GMM/iv 6.82 1.98 1.15
DBF-*** GMM/iv 5.98 1.72 1.08
DBF-eng GMM/iv + DNN-eng/post 6.41 1.84 1.09
DBF-*** GMM/iv + DNN-#***/post ~ 5.45 1.62 1.02

TABLE I: Cavgx100 for LREQ9 for different individual
systems and fusions corresponding to those in Figure 5. The
asterisks indicate that the system is a parallel system (the
darker bars in Figure 5).

that, in both cases, the fusion of the two approaches leads to
gains over using only the DBF approach. In particular, when
all eight systems are fused from both approaches, we achieve
relative gains between 6 and 9% with respect to fusing only
the DBF systems. This eight-way fusion performs 60 and 67%
better compared to the baseline SDC GMM/iv system. Adding
the SDC GMM/iv and SDC DNN/iv systems to this fusion or
to the eng-only fusion does not lead to further gains (result
not shown). Results from the figure are repeated in Table I for
completeness.

The results from the fused system (last line in Table I) are,
by a large margin, the best results reported on this task in
the literature. For example, for the three-second condition, the
best reported Cavg results we could find for this task were
9.71, for a DBF-based system [10], and 10.2, for a fusion
of 15 different systems [35]. At the other extreme, for the
30-second condition, the best reported Cavg result we were
able to find was 1.25, for a fusion of a baseline system and a
phonotactic system [36].

IV. RATS EXPERIMENTS

This section describes the RATS SLR dataset, the system
configuration used for the experiments, and results on various
systems that show that the main conclusions obtained on the
clean LREO9 data carry over to this challenging dataset.

A. Dataset and System Configuration

The RATS SLR task consists of five target languages (Farsi,
Urdu, Pashto, Levantine Arabic and Dari) and a predefined set
of ten out-of-set languages ([27], [37]). Clean conversational
telephone recordings were retransmitted over seven channels
for the RATS program; the eighth channel, D, was excluded
from the SLR task. The signal-to-noise ratio (SNR) of the
retransmitted signals ranged between 30 dB to O dB. Four
conditions were considered in which test signals were con-
strained to have a duration close to 3, 10, 30 and 120 seconds,
respectively. The details of the task can be found in [38].

The data used for training the GMM, i-vector models, and
the backends for all systems included data from the five target
languages and the out-of-set languages, as well as some related
languages, extracted from the RATS SLR training set. Samples
from this set were selected to constitute a relatively balanced
distribution of target languages, with a total of 23K segments
with a mean speech duration of 80 seconds. As with the LRE
experiments, all GMMs had 2048 components with diagonal
covariances; the i-vectors were all of dimension 400; and all
systems were gender-independent in all their components.

Given the large mismatch between the length of the training
segments (80 seconds of speech on average) and the shorter
test conditions, different research groups have proposed to
chunk the training data to generate i-vectors using waveforms
of durations closer to those of the test samples, reporting
significant gains from this procedure ([9], [12], [39]). For the
experiments presented here, the training dataset was chunked
into segments containing approximately 8 seconds and 30
seconds of speech with 50% overlap between segments in both
cases. These data, along with the full waveforms, were used for
backend training. Note that the relative gains from chunking
are somewhat system- and backend-dependent. As a rule of
thumb, the higher the dimension of the vector that is input to
the backend (400 versus the number of senones) and the more
complex the backend (GB versus NN), the larger the benefit
from using the chunks.

For this dataset, power-normalized cepstral coefficient
(PNCC) features of 40 dimensions were used for the baseline
and DNN/iv approaches [40]. These features were processed
using a method proposed in [41]. The discrete cosine transform
(DCT) over a window of 21 frames of PNCC features was
computed. From those coefficients, a set of 80 with the highest
average rank across a set of speech frames from the training
data was selected. Our experiments showed that these features
performed significantly better on the RATS SLR task than
other features like the mel filter bank and medium-duration
modulation cepstral (MDMC) features processed in this same
manner. See [42] for a description of the raw MDMC and
PNCC features along with more references. Because the focus



of this paper is not the features, we only show results for the
best set of features.

DBFs were obtained using the DNNs described below.
These features were mean and variance normalized before i-
vector extraction.

As with the LREQ9 experiments, we used a GMM-
based SAD system. Speech and non-speech 1024-dimensional
GMMs were trained using 20-dimensional PNCC features,
plus deltas and double deltas, on the speaker identification
data from the RATS program (which includes speech/non-
speech annotations). These models were used to obtain LLRs
per frame. In this case, instead of making hard decisions on
whether a frame is speech or not, the LLRs were transformed
via a sigmoid, with shift=-0.6 and scale of 1.0, to obtain
pseudo-posteriors. These values were used when computing
the accumulators for each sample to smoothly decide how
much contribution each frame should have in the computation.
More details on this novel “soft” SAD approach can be found
in [43].

The RATS SLR data does not include transcriptions. Hence,
the RATS keyword-spotting training set including 260 hours
of Levantine Arabic (lev) and 400 hours of Farsi (fas) data was
used to train the HMM-GMMs and the convolutional DNNs
for these experiments. The data includes clean and channel-
degraded waveforms. We set the number of senones for each
DNN at approximately 3500. The exact number of senones
after decision tree training was 3513 for fas and 3323 for lev.
In [9], we showed that larger DNNs give a small performance
improvement. However, we decided to use the medium size
for computational reasons. Two hundred convolutional filters
of size 8 were used in the convolutional layer, and the pooling
size was set to three without overlap. Five hidden layers of
size 1200 were used after the convolutional layer. As with the
LRE experiments, the input features to the DNNs were given
by 40 log mel-filterbank coefficients with a context of 7 frames
on each side of the center frame for which predictions were
made. No adaptation was used to train the language-specific
DNNs for this task because they both have a similar amount
of training data.

The alignments used to train the DNNs were obtained
with an HMM-GMM ASR system with 200k Gaussians that
were trained to maximize the likelihood of the same data
used to train the DNNs. The features used in these models
are 52-dimensional PLPs followed by heteroscedastic linear
discriminant analysis (HLDA) to reduce their dimension to 39.
These features were pre-processed with speaker-based MVN.

Neural network backends were used for these experiments,
as described in Section II-D. The scores generated by the
backends were further calibrated through multi-class logistic
regression using two-fold cross-validation on the test data.
The split into two folds was done based on the name of the
source signal (the signal that was retransmitted to generate
the distorted ones), keeping all retransmitted signals from the
same source in the same split.

B. Results

Figure 6 shows results for the systems described in Section
II-E. The DNN/iv system based on DBF features is not shown
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in the figure because its results are worse than those of the
GMM/iv approach based on the same features. All DNN-based
systems in this figure correspond to parallel systems where a
fas-only and a lev-only system are fused at the score level.
This fusion leads to gains up to 25% relative to the better of
the two systems being fused. For this task, we have also tried
to train multilanguage DNNSs, using a merged phone space for
the two languages (fas+lev). We do not show results for this
approach because the parallel approach always outperforms
the single system that uses the fas+lev DNN. This observation
was first made in [9] for the DNN/post system. We have also
confirmed this to be the case for the other DNN-based systems
presented here.

Comparing with Figure 2, we can see that the main conclu-
sion holds for both datasets: the DBF-based systems greatly
outperform all other systems. We also see that modeling
these features with the DNN/iv approach does not lead to
consistent gains. On the other hand, we can see one important
discrepancy: the DNN/iv system based on spectral features
outperforms the GMM/iv system for the RATS dataset, but
not for the LREO9 dataset. Note that this discrepancy is not
due to the difference in features (SDCs in the case of LRE09
and PNCC in the case of RATS). The DNN/iv approach
outperforms the GMM/iv approach for a variety of features on
the RATS data, including MDMC, PLP and mel spectra. We
believe this result can be explained by the fact that the DNN
for RATS is trained on channels that perfectly match those
seen in testing. On the other hand, for LREQ9, the channels
used for training the DNN are somewhat different from those
seen in testing, which include telephone speech retransmitted
over radio channels. This mismatch probably results in lower-
quality posteriors from the DNN for LRE09 than for RATS,
which would explain why the DNN/iv systems perform worse
for LREO9 than for RATS. The DBF-based and DNN/post
systems, on the other hand, do not seem to suffer from the
lower-quality DNNs; they are exceptionally good for both
datasets.

The figure also shows a few different fusion systems that
merge different approaches. The full fusion includes all seven
individual systems involved in the different approaches (one
for the PNCC GMM/iv system and two, one for fas and one
for lev, for each of the other systems). We can see that fusion
leads to significant gains for the shortest durations. Adding
systems other than the DBF GMM/iv and DNN/post systems
only leads to small gains for the three-second condition.

V. CONCLUSIONS

In this paper we present and compare various approaches
previously proposed in the literature for using senone-driven
DNNs in SLR systems. We evaluate the systems on two tasks:
the standard 2009 NIST LRE and RATS SLR. These tasks
present very different challenges to the SLR systems, given
their different characteristics in terms of acoustic conditions,
task definition, and available training data.

The DNN/iv approach, which replaces the GMM-based pos-
teriors during i-vector extraction with DNN-based posteriors,
was first proposed for speaker recognition and leads to impres-
sive gains on telephone speech. When applied to SLR tasks,
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Fig. 6: Cavgx100 for RATS SLR for different individual
approaches and their fusion. All DNN-based systems are
parallel systems (that is, a score-level fusion of two systems,
one based on fas, and one based on lev DNNs).

the approach outperforms the baseline GMM/iv approach for
the RATS task but not for the LRE09 task. We believe this
result is due to differences in channel characteristics between
the data used for training the DNNs for LRE09, which is
restricted to telephone speech, and the evaluation data, which
includes telephone speech retransmitted over radio channels.
On the other hand, the data used to train the RATS DNNs
is well matched to the evaluation data, including the same
transmission channels. As we have observed for the speaker
recognition task, this approach appears to be quite sensitive to
data mismatch.

The other two approaches tested here use a senone-driven
DNN to extract features, which are then modeled with standard
techniques. The first approach extracts the features from a
bottleneck layer in the DNN; the second one uses the output
layer. We show that the approach where bottleneck features
are modeled with the standard GMM/iv technique outperforms
all other approaches on both the LRE(09 and the RATS task,
followed closely by the approach based on the posterior
features extracted from the output layer of the DNN. Both
approaches greatly outperform the baseline GMM/iv system
based on standard spectral features and also outperform the
DNN/iv approach. We believe one key to the success of these
two systems is that the features extracted this way are robust
to channel and speaker variation, given that the DNNs used to
extract them are trained to predict the senone posteriors for a
large set of speakers and channels.

For the LREQ9 task, where the training data is quite
unbalanced across languages, we propose a weighted ver-
sion of the Gaussian backend that leads to consistent gains
across all systems and durations, with negligible additional
computational cost. We also propose using an adaptation
procedure for training DNNs for languages with few resources.
This procedure leads to relative gains of up to 57% on the
bottleneck and posterior feature approaches. Fusion of systems
based on the adapted DNNs from four different languages
leads to significant gains on both approaches, with much larger
gains on the posterior-based approach.

Overall, the fusion of bottleneck and posterior feature-based
approaches with DNNSs trained with different languages results
in systems that are between 40 and 70% better than the
baseline GMM/iv systems for both tasks over all test durations.

In the future, we plan to explore alternative feature creation
and modeling techniques for the output layer of the DNN. We
will also evaluate recent deep learning techniques for senone
posterior estimation that have led to improvements in ASR,
such as deep convex networks and long short-term memory
recurrent neural networks.
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