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Abstract 
 This paper presents a new signal-processing technique 
motivated by the physiology of human auditory system. In this 
approach, auditory hair cells are modeled as damped 
oscillators that are stimulated by bandlimited time domain 
speech signals acting as forcing functions. Oscillation 
synchrony is induced by time aligning and three-way coupling 
of the forcing functions across the individual bands such that a 
given oscillator is induced not only by its critical band’s 
forcing function but also by its two neighboring functions. We 
present two separate features; one which uses the damped 
oscillator response to the forcing functions without synchrony 
which we name as the Damped Oscillator Cepstral Coefficient 
(DOCC) and the other which uses the damped oscillator 
response to a time synchronized forcing function and we name 
it as the Synchronized Damped Oscillator Cepstral Coefficient 
(SyDOCC). The proposed features are used in an Aurora4 
noise- and channel-degraded speech recognition task, and the 
results indicate that they improved speech-recognition 
performance in all conditions compared to the baseline mel-
cepstral feature and other published noise robust features. 
Index Terms—robust speech recognition, damped oscillators, 
modulation features, noise and channel degradation. 

 

1. Introduction 
Traditional continuous automatic speech recognition (ASR) 

systems perform quite well at clean and high signal-to-noise 
ratios (SNRs), but their performance degrades at low SNR 
conditions. Studies have indicated that ASR systems are quite 
sensitive to environmental degradations such as noise, channel 
mismatch, and/or distortions. To address such problems, 
alternative speech analysis techniques have become an 
important research area. 

Typically, state-of-the-art ASR systems use mel-frequency 
cepstral coefficients (MFCCs) or RelAtive SpecTrA  
Perceptual Linear Prediction (RASTA-PLP ) [1] features as 
the acoustic feature. MFCCs perform quite well in clean, 
matched conditions and have been the feature of choice for 
most speech applications. However, MFCCs are usually 
sensitive to frequency localized random perturbations, to 
which human perception is largely insensitive [2], and their 
performance drastically degrades with increased noise levels 
and channel degradations. RASTA-PLP is typically found to 
offer a greater degree of channel and noise robustness 
compared to MFCC. To induce robustness into the frontend 
signal processing steps of current ASR systems, researchers 
have explored for better and robust speech analysis 
methodologies. The past few decades have witnessed a wide 
array of robust signal processing methods and acoustic 
features [2-9] that have not only demonstrated robustness to 
noisy and degraded speech conditions, but also matched 
MFCCs’ performance under the clean condition. Some of 
these approaches explored speech-enhancement techniques 
(e.g., spectral subtraction [3], computational auditory scene 

analysis [4], etc.) along with robust signal-processing 
techniques (e.g., the ETSI [European Telecommunication 
Standards Institute] advanced front end (AFE) [5]); while 
others have explored noise-robust transforms and/or human-
perception-based speech analysis methodologies for acoustic 
feature generation (e.g., power normalized cepstral 
coefficients [PNCC] [6]; speech-modulation-based features [7, 
8]; perceptually motivated minimum variance distortionless 
response (PMVDR) features [9]; and many others). 

Studies have indicated that human auditory hair cells 
exhibit damped oscillations in response to external stimuli [10] 
and such oscillations result in enhanced sensitivity and sharper 
frequency responses. The human ear consists of three parts: 
(1) the outer ear, which collects and directs sound to the 
middle ear; (2) the middle ear, which transforms the energy of 
a sound wave into compression waves to be propagated 
through the fluid and membranes of the inner ear; and finally 
(3) the inner ear, which is the innermost part of the ear, 
responsible for sound detection and balance. The inner ear acts 
both as a frequency analyzer and a non-linear acoustic 
amplifier [11]. The Cochlea is a part of the inner ear and has 
more than 32,000 hair cells, with its outer hair cells amplifying 
the waves transmitted by the middle ear and its inner hair cells 
detecting the motion of those waves and exciting the neurons 
of the auditory nerve. The basal end of the cochlea (the end 
closer to the middle ear) encodes the higher end of the audible 
frequency range, while the apical end of the cochlea encodes 
the lower end of the audible frequency range. This 
physiological structure enables spectral separation of sounds 
in the ear. The auditory hair cells inside the cochlea perform 
the critical task of wave-to-sensory transduction, commonly 
known as mechano-transduction [11], which is the conversion 
between mechanical and neural signals. The outer hair cells 
help to mechanically amplify low-level sounds entering the 
cochlea, while the inner hair cells are responsible for the 
mechano-transduction.  

Each hair cell has a characteristic sensitivity to a particular 
frequency of oscillation, and when the frequency of the 
compression wave from the middle ear matches a hair cell’s 
natural frequency of oscillation, that hair cell resonates with 
large amplitude of oscillation. This increased amplitude of 
oscillation induces the cell to release a sensory impulse that is 
sent to the brain via the auditory nerve. The brain receives the 
information and performs the auditory cognition process. 
Studies [10, 12] have indicated that the hair cells demonstrate 
damped oscillations and in this paper we aim to model such 
damped oscillator behavior through a novel time domain 
speech analysis technique. 

Here, we propose a damped oscillator model to mimic the 
mechano-transduction process and to analyze the speech 
signal in order to generate acoustic features for an ASR 
system. In our approach, the input speech signal is analyzed 
using a bank of gammatone filters that generate bandlimited 
time signals. Each of these bandlimited signals is treated as a 
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forcing function for a driven damped oscillator tuned to the 
center frequency of that band. We present two different 
implementations, in the first case we directly use the 
bandlimited signal as the forcing function of the damped 
oscillator and the features obtained from that is named as the 
Damped Oscillator Cepstral Coefficients (DOCC). In the 
second case we infuse 3-way synchronicity (more details in 
section 2) into the forcing function and then excite the damped 
oscillator with such synchronous excitation and name the 
ensuing feature as the synchronous DOCC (SyDOCC). Our 
use of synchrony information is motivated by earlier 
observations [13, 14], which stated that there is an inherent 
synchronicity during the process of generation of neural spikes 
for performing mechano-transduction in the inner ear. 
Previous studies [15, 16] have incorporated synchrony effects 
and have shown that it helps in improving ASR performance.  

In the proposed acoustic feature, the amplitude of 
oscillation for each of the damped oscillators is estimated 
using a method explained in section 2 and its power is 
obtained over a time window. Root compression is performed 
on the resulting power signal followed by Discrete Cosine 
Transform (DCT) to generate the cepstral features. Deltas and 
higher-order deltas are computed and then appended to the 
cepstral features. The proposed features were compared with 
the commonly used MFCC and RASTA-PLP features and also 
with some state-of-the-art noise-robust features such as PNCC 
[17], Normalized Modulation Cepstral Coefficients (NMCC) 
[8] and the ETSI-AFE [5]. We used Aurora4 noisy English 
word-recognition task for our ASR experiments, where the 
mismatched train-test setup was used.  
 

 2. The Forced Damped Oscillator Model 
A simple harmonic oscillator is a one that is neither driven nor 
damped and is defined by the following equation 

 

  � = �� = � ���
��� = −	
  (1)  

 

where m is the mass of the oscillator; x is the position of the 
oscillator; F is the force that pulls the mass in direction of the 
point x = 0; and k is a constant. Friction or damping slows the 
motion of the oscillators, with the velocity decreasing in 
proportion to the frictional force. In such cases, the oscillator 
oscillates using only the restoring force, and such a motion is 
known as the damped harmonic motion, defined as 
 

  � = −	
 − � ��
�� = � ���
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which can be rewritten as   
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��� + 2�� ��
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where  � =  � �
�    and  � = �

�√��   
 

Here, c is called the viscous damping coefficient; � is the 
undamped angular frequency of the oscillator; and � is called 
the damping ratio. The value of � determines how the system 
will behave, and defines whether the system will be: (1) 
overdamped (� > 1), where the system exponentially decays 
to a steady state without oscillating; (2) critically damped 
(� = 1), where the system returns to a steady state as quickly 
as possible without oscillating; and finally (3) underdamped 
(� < 1), where the system oscillates with an amplitude 
gradually decreasing to zero. In the underdamped case, the 
angular frequency of oscillation is given by 
 

  � = � �1 − ��      (4) 
Forced damped oscillators are damped oscillators affected by  

an externally applied force Fe(t), where the system’s behavior 
is defined by equation (5) 

 � ���
��� + 2��� ��

�� + ���
 = ��(�)  (5) 
 

Assuming that the force can be represented as a sum of pulses, 
it can be shown easily that the resulting displacement of the 
oscillator will be a sum of the displacements from each of 
those pulses. If we consider two instances of a damped 
harmonic oscillator where each of them are driven by two 
separate forces Fecos(ωt) and Fesin(ωt): 
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it can be shown that equation (5) can be written as  
 

    � ���(�)
��� + 2��� ��(�)

�� + ���!(�) = ��"#$� (6) 
 

where !(�) = 
(�) +  %�(�) and represent ���� + %���� =
"#$�, Equation (6) suggests that we can look for a solution of 
the form !(�) = !�"&�, where  

    �
��(�)
��� =  '�!� "&�  ��*   ��(�)

�� =  '!� "&�  
from equation (6) we have  
 

    �'�!�"&�  + 2���'!� "&�  + ���!�"&� = ��"#$� (7) 
              �!�['� + 2��' + ��]"&� = ��"#$�  (8) 

which indicates that "&�= "#$� or ' = %. Then !(�) =
!�"#$�, implying that !(�) is a complex exponential with the 
same frequency as the applied force, indicating that if we 
apply a sinusoidal force with frequency ω, then the 
displacement x(t) will also vary as a sine or cosine with a 
frequency ω. Now ignoring the exponentials in equation (8) 
we get 
 

                       �!�['� + 2��' + ��] = ��  (9) 
 

As ' = %, (9) becomes 
 

                       �!�[−� + 2%�� + ��] = ��               (10) 
or  

                       !� = ,-
�[($.�/$�)3�#4$.$]                (11) 

 

We now see that !� is a complex number, hence we can write 
it as                                !� =  |!�|"#5                   (12) 
 

Now recall that             
(�) =  Re[!(�)]      
                 =  Re6|!�|"#5. "#$�8  
                 =  Re6|!�|"#($�35)8  
                 =  |!�|cos(� + 9)              (13) 
 

which says that the displacement is a cosine function of time 
that has a relative phase shift of 9 with respect to the driving 
force. Now using the definition |!�|� = !�∗!� we get 
 

            |!�|� = ; ,-
�[($.�/$�)3�#4$.$]? ; ,-

�[($.�/$�)/�#4$.$]?  
                      = ,-�

��[($.�/$�)�3(�4$.$)�]                (14) 
 

Hence the amplitude of oscillation in response to a force at 
frequency ω is given as 
 

                               |!�| = ,- �@
�($.�/$�)�3(�4$.$)�

               (15) 

 

From (15) we see that at resonance, i.e., � = � , 
|!�| becomes  
 

                                        |!�| = ,-
��4$.�

                               (16) 
 

indicating that the bank of oscillators behave as a low pass 
filter, where it uses lower gains for high frequency bands and 
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higher gains for the low frequency bands. To counter this 
effect we have selected m to be as follows 
 

                                                � = �
�4$.�

                 (17) 
 

Note that � and � can be user defined, where we have 
selected � < 1, to ensure underdamped oscillation.  

Next, to model the damped oscillator in discrete time, we 
transform the differential equation (5) into a difference 
equation using 

                                     ��
�� = �[A]/�[A/�]

B                 (18) 
 

Then equation (5) becomes 
 

  
[�] = C�4D.�E,-[A]3�(�34D.)�[A/�]/�[A/�]
C �3�4D.3D.�E        (19) 

 

where F� = 0G and G = 1/IJ. To infuse synchrony into the 
features we have modified the forcing function as defined by  
 

 

where ��,O[�] is the forcing function from the gammatone filter 
with a center frequency fi, ΔQ,Q/�is the time lag between forcing 
functions ��,O[�]  and ��,O/�[�]. The rationale behind expression 
(20) is that the triple product followed by the Damped 
Oscillator filter approximates the triple cross-correlation 
coefficient of the outputs of three adjacent auditory channels. 
A sinusoidal component present in the three adjacent channels 
will be preserved in the triple product and pass through the 
Damped Oscillator filter, on the other hand, noisy uncorrelated 
components across channels will tend to be reduced. The time 
lag is computed dynamically for each analysis window using 
average magnitude difference function (AMDF), shown as – 
 'O,O/�[	] = ∑ T��,O[� + �]U[�] − ��,O/�[� + � − 	]U[� − 	]T� (21) 
 

where U[�] is a rectangular window whose duration is 
defined as 4fs/ fi, where fs is the sampling frequency of the 
signal. The AMDF function roughly looks like an inverted 
autocorrelation function and is more efficient than the latter as 
it involves only addition. We use the AMDF function [18] to 
obtain the pair-wise lag information ΔQ,Q/� and ΔQ,Q3�using (22[) 
 ΔQ,Q/� = minV 'O,O/�[	] 
                                    ΔQ,Q3� = minV 'O,O3�[	]                (22) 
 

The lags from (22) are used in (20) to compute the synchrony 
forcing functions, aiming to maximize the response to 
components in synchrony across channels, which are then 
used to excite the damped oscillators. The time response of the 
forced damped oscillators is obtained using (19) and their 
power over a hamming analysis window of 25.6 ms is 
computed. Figure 1 shows the spectrogram of a speech signal 
shows that the oscillator model successfully retained the 
harmonic structure while suppressing the background noise.  

 
Figure. 1. (a) Spectrogram of signal corrupted with 3 dB noise and 
(b) Spectral representation of the damped oscillator response after 

gammatone filtering (without synchrony information). 

corrupted by noise at 3dB, followed by the power plot of the 
damped oscillator response (without synchrony). Figure 1  

We tried three different flavors of the damped oscillator 
based feature as shown in Figure 2, (1) DOCC features: 
damped oscillator response using gammatone filterbank 
outputs as forcing functions, (2) SyDOCC: damped oscillator 
response using 3-way synchronized gammatone filterbank 
outputs and (3) DOCC_direct: damped oscillator response 
directly using the full speech signal as the forcing function. In 
the last case speech is not analyzed using any filterbank, hence 
no synchrony information was used in that setup. In all the 
above three features the speech signal is pre-emphasized 
(using coefficient of 0.97) and then analyzed using a 25.6 ms 
Hamming window with a 10 ms frame rate. For DOCC and 
SyDOCC, the windowed speech signal is passed through a 
gammatone filterbank having 40 channels for 8 kHz data and 
50 channels for 16 kHz data with cutoff frequencies at 200 Hz 
to 3750 Hz (for 8 kHz) and 200 Hz to 7000 Hz (for 16 kHz), 
respectively. The damped oscillator model is deployed on each 
of the bandlimited signals (for DOCC) and on 3-way 
synchronized bandlimited signals (for SyDOCC) from the 
gammatone filterbank. The damped oscillator response is 
smoothed using a modulation filter with cutoff frequencies at 
0.9 Hz and 100 Hz. The powers of the resulting time signals 
are computed which are then root compressed (1/15th root for 
DOCC and 1/7th root for SyDOCC) and DCT transformed. 
The first 13 coefficients were retained (including C0), and up 
to triple deltas were computed, resulting in a feature with 52 
dimensions.   

 

 
Figure. 2. Block diagram of the damped oscillator based feature 

extraction: (a) DOCC, (b) SyDOCC and (c) DOCC_direct. 
 

3. Data  
The Aurora4 English continuous speech recognition database 
was used in our experiments, which contains six additive noise 
versions with channel-matched and channel-mismatched 
conditions. It was created from the standard 5K Wall Street 
Journal (WSJ0) database and has 7180 training utterances of 
approximately 15 hours duration, and 330 test utterances each 
with an average duration of 7 seconds. The acoustic data (both 
training and test sets) included two different sampling rates (8 
kHz and 16 kHz). For training the acoustic models, we used 
the clean training part of the database, which is the full SI-84 
WSJ train-set without any added noise. The Aurora-4 test data 

                                                        (20) 
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include 14 test-sets from two different channel conditions and 
six different added noises (in addition to the clean condition). 
The SNR was randomly selected between 0 and 15 dB for 
different utterances. The six noise types used were car, babble, 
restaurant, street, airport and train-station along with the clean 
condition. The evaluation set included 5K words in two 
different channel conditions. The original audio data for test 
conditions 1–7 was recorded with a Sennheiser microphone, 
while test conditions 8–14 were recorded using a second 
microphone that was randomly selected from a set of 18 
different microphones (more details in [19]). The different 
noise types were digitally added to the clean audio data to 
simulate noisy conditions. 

 

4. Description of the ASR System Used 
SRI International’s DECIPHER® LVCSR [20] system was 
used in our ASR experiments. The LVCSR system employs a 
common acoustic front-end that computes 13 MFCCs 
(including energy) and their Δs, Δ2s, and Δ3s. Speaker-level 
mean and variance normalization was performed on the 
acoustic features prior to acoustic model training. 
Heteroscedastic linear discriminant analysis (HLDA) was used 
to reduce the 52D features into 39D. We trained maximum 
likelihood estimate (MLE) cross-word, HMM-based acoustic 
models with decision-tree clustered states. The system uses a 
bigram language model (LM) on the initial pass and uses 
second-pass decoding with model space maximum likelihood 
linear regression (MLLR) speaker adaptation followed by 
trigram LM rescoring of the lattices from the second pass.  
 

5. Experiments and Results 
 

For the Aurora4 English speech recognition experiments, we 
used the mismatched condition (i.e., training with clean data 
and testing with noisy and different channel data) at 8 kHz and 
16 kHz. Nine different features were explored in our 
experiments: (1) MFCC, (2) RASTA-PLP, (3) PNCC [17], (4) 
PMVDR [9], (5) ETSI-AFE [5], (6) NMCC [8], (7) DOCC, 
(8) SyDOCC and (9) DOCC_direct features. All the features 
had Δs, Δ2s, and Δ3s computed resulting in a 52 dimensional 
feature, which were then HLDA transformed to 39 dimensions 
before being fed to the LVCSR system. 
 The WERs from PMVDR and ETSI-AFE features were 
worse than the top four best performing noise robust features 
and hence we refrained from showing those numbers into our 
results in tables 1-4. The DOCC_direct features suffered from 
lack of frequency resolution, as a consequence of which the 
high frequency components suffered from too much of 
smoothing. The lack of frequency resolution in the 
DOCC_direct features resulted in quite high WERs and thus 
its results are not shown in the tables as well.  
 Tables 1 through 4 shows the WERs from 8 kHz and 16 
kHz channel- matched and mismatched clean-training 
experiments. DOCC performed the best at 8 kHz matched 
channel condition, providing a relative WER improvement (at 
noisy test conditions) of 16.8%, 1.1% and 4.1% compared to 
MFCC, PNCC and NMCC features. SyDOCC performed the 
best at both 8 kHz and 16 kHz mismatched channel conditions 
and at 16 kHz matched condition, providing a relative WER 
improvement (at noisy test conditions) of 14.8%, 4.3% and 
5.0% at 16 kHz matched condition, 6.6%, 4.1% and 3.2% at 
16 kHz mismatched condition and 15.0%, 4.7% and 4.9% at 8 
kHz mismatched condition compared to MFCC, PNCC and 
NMCC features respectively. Overall, SyDOCC performed the 
best at all conditions except the 8 kHz matched condition,  

where it was a close third after DOCC and PNCC features.  
 

Table 1. WER for the clean-training condition (with the testing 
channel same as the training) at 16 kHz. 

 MFCC RASTA-PLP PNCC NMCC DOCC SyDOCC 
Car 14.7 20.5 16.5 15.7 16.1 14.1 

Babble 29.3 38.2 26.0 25.6 25.0 25.2 
Restaurant 37.3 42.0 30.3 31.0 30.7 31.6 

Street 32.9 47.9 28.7 28.1 26.8 26.0 
Airport 24.8 29.8 24.3 25.9 23.8 24.0 

Train station 35.8 52.4 29.5 30.8 27.9 27.7 
Average 29.1 38.5 25.9 26.1 25.1 24.8 

 

Table 2. WER for the clean-training condition (with the testing 
channel different from the training) at 16 kHz. 

 MFCC RASTA-PLP PNCC NMCC DOCC SyDOCC 
Car 23.2 36.2 25.6 24.5 25.5 21.9 

Babble 44.4 56.4 42.6 41.1 42.7 43.6 
Restaurant 48.0 60.2 45.7 47.4 46.3 44.0 

Street 47.2 64.6 45.8 45.1 43.2 42.8 
Airport 40.8 51.1 39.7 40.8 39.8 39.6 

Train station 49.7 62.4 47.3 45.2 43.4 44.5 
Average 42.2 55.2 41.1 40.7 40.2 39.4 

 

Table 3. WER for the clean-training condition (with the testing 
channel same as the training) at 8 kHz. 

 MFCC RASTA-PLP PNCC NMCC DOCC SyDOCC 
Car 20.0 23.4 21.8 21.0 20.6 19.7 

Babble 43.6 47.0 36.2 37.6 37.0 39.2 
Restaurant 46.4 44.7 39.6 41.8 39.8 40.4 

Street 51.0 54.3 39.7 39.4 37.0 39.4 
Airport 38.4 37.7 34.7 36.4 34.7 36.0 

Train station 50.7 53.6 38.4 41.1 37.7 41.0 
Average 41.7 43.5 35.1 36.2 34.7 35.9 

 

Table 4. WER for the clean-training condition (with the testing 
channel different from the training) at 8 kHz. 

 MFCC RASTA-PLP PNCC NMCC DOCC SyDOCC 
Car 25.0 30.0 27.1 25.2 25.3 23.1 

Babble 49.5 55.7 42.3 42.1 42.6 40.6 
Restaurant 53.3 56.4 48.1 48.0 47.7 45.1 

Street 57.5 64.5 48.2 47.5 46.9 47.3 
Airport 43.3 48.0 42.3 42.7 41.8 39.0 

Train station 54.9 60.8 45.2 46.0 45.7 46.3 
Average 47.3 52.6 42.2 41.9 41.7 40.2 

 
6. Conclusion 

 

We presented and tested three different damped oscillator 
based acoustic features – DOCC, SyDOCC and DOCC_direct. 
Results indicate that use of synchrony information in 
SyDOCC features significantly improved its performance at 
clean, high SNR and channel mismatched conditions 
compared to the other features used in our experiments. At 
matched channel conditions the damped oscillator based 
feature without synchrony information (DOCC) was found to 
be sufficient to ensure satisfactory performance; where we 
observed a small reduction in performance when synchrony 
information was used. The proposed features performed 
competitively with respect to the existing noise robust features 
and always showed improvement in WER. 
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