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ABSTRACT
This work addresses lexical unit discovery for languages without
(usable) written resources. Previous work has addressed this prob-
lem using entirely unsupervised methodologies. Our approach in
contrast investigates the use of linguistic and speaker knowledge
which are often available even if text resources are not. We cre-
ate a framework that benefits from such resources, not assuming
orthographic representations and avoiding generation of word-level
transcriptions. We adapt a universal phone recognizer to the target
language and use it to convert audio into a searchable phone string
for lexical unit discovery via fuzzy sub-string matching. Linguis-
tic knowledge is used to constrain phone recognition output and to
constrain lexical unit discovery on the phone recognizer output.

Target language speakers are used to assist a linguist in creat-
ing phonetic transcriptions for the adaptation of acoustic and lan-
guage models, by respeaking more clearly a small portion of the
target language audio. We also explore robust features and feature
transform through deep auto-encoders for better phone recognition
performance.

The proposed approach achieves lexical unit discovery perfor-
mance comparable to state-of-the-art zero-resource methods. Since
the system is built on phonetic recognition, discovered units are im-
mediately interpretable. They can be used to automatically populate
a pronunciation lexicon and enable iterative improvement through
additional feedback from target language speakers.
Index Terms: lexical discovery, low resource languages, automatic
speech recognition

1. INTRODUCTION

State-of-the-art automatic spoken language technology tasks that
involve recognizing words from acoustic input, such as automatic
speech recognition and spoken term discovery, typically rely on
linguistic resources such as phoneme inventories, pronunciation dic-
tionaries, and annotated speech data. Such resources are unavailable
for many languages and expensive to create.

Recent work on zero-resource spoken language learning has ad-
dressed the scenario in which no resources are available for sys-
tem development [1, 2, 3, 4]. That research targeted unsupervised
phonetic and lexical unit discovery from audio data and produced
some interesting results. Nevertheless, these approaches still result
in significantly degraded performance compared to using written re-
sources with standardized orthography.

Alternatively, other researchers have concentrated on developing
systems using a small amount of transcribed data, aiming to achieve
acceptable performance, while still minimizing annotation expense.
In particular, the IARPA Babel program extended speech recognition
capabilities to under-resourced languages, targeting the task of key-
word spotting (KWS) in audio documents [5, 6]. However, these ef-
forts still rely on significant amounts of manual audio transcriptions

and lexicons with standardized orthography, which is an expensive
and time-consuming activity even for a small number of words.

Real-world scenarios often lie in the space between zero-
resource and limited-resource approaches. Although many lan-
guages lack written resources, they have existing linguistic studies.
Typically, researchers and system developers also have access to
speakers with some proficiency in the target language [7, 8], as well
as to a wide variety of annotated data in other languages.

This work addresses lexical discovery in languages without writ-
ten development resources by creating a framework that benefits
from those limited but commonly available linguistic and speaker
resources. Lexical discovery is implemented as a search of repeated
phone strings, by using fuzzy substring matching on the output of a
universal phone recognizer. Unlike several of the lexical discovery
approaches in the literature that work with pattern matching on the
acoustic space or use automatically discovered subword units, we
chose to work with phone units because it enables leveraging lin-
guistic knowledge and using input from linguists to improve system
performance.

This approach achieves performance on lexical discovery that is
comparable to competing zero-resource methods based on acoustic-
only pattern matching. Because the system is built on phonetic
recognition, the results are immediately interpretable by linguists,
can be used to seed a pronunciation lexicon, and offer the poten-
tial for iterative improvement through additional feedback from the
target language speaker.

Contributions of our human-assisted lexical unit discovery tech-
nique include:

We explored linguistic knowledge and respeaking data collec-
tion with the assistance of native speakers to adapt and refine
the universal phone recognizer and achieved significant im-
provement on the phone recognition performance. We also
explored the linguistic knowledge in lexical unit discovery
based on fuzzy substring matching and achieved improve-
ment on the lexical unit discovery performance.

We investigated the effectiveness of noise robust features for
lexical unit discovery in the dynamic time warping (DTW)
framework and observed a significant improvement on per-
formance compared to the mel-frequency cepstral coefficient
(MFCC) features, especially a significant improvement on the
cross-speaker lexical unit discovery performance.

2. APPROACH: HUMAN-ASSISTED SYSTEM
DEVELOPMENT

This section outlines our approach to human-assisted lexical discov-
ery. Each aspect of the approach is summarized here, and described
in detail in the following sections.
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A universal phone recognizer is used to decode the audio into
a string of phones. This universal recognizer was created us-
ing supervised training from a variety of languages with re-
sources.
As expected, the universal phone recognizer’s initial perfor-
mance was fairly poor for unseen languages. Our next step
was to improve the recognition performance using linguistic
knowledge that is typically available even when text resources
are not. In particular, the language’s phonetic inventory and
syllable structure are used to constrain the recognition output.
We also had access to target language speakers, and we used
them as a resource to improve recognition performance. We
recorded the native speakers re-speaking a small amount of
the real-world target language data. Compared to the real-
world recordings, the respoken data was more intelligible and
had less background noise, which allowed a trained linguist to
manually create phonetic transcriptions. These transcriptions
were then used to adapt the recognizer to the target language.
The baseline for our lexical discovery experiments was to
search for repeated patterns directly on the acoustics using
dynamic time warping (DTW). We used the algorithms and
publicly available tools from [9, 10]. Our results were evalu-
ated using the metric presented in [11].
We additionally investigated the effectiveness of noise robust
features for lexical unit discovery in the DTW framework.
Finally, our lexical discovery approach finds words by search-
ing for repeated phone strings in the output of the universal
phone recognizer. We used the standard repeated substring
detection algorithm, and also explored several modifications.

3. EXPERIMENTAL SETUP

We evaluate our results on the Amharic and Pashto development sets
from the IARPA Babel program. This audio was collected under
a variety of real-world conditions and contains background noise.
Amharic has approximately 7 hours of audio and 50,000 words, and
Pashto has 8 hours and 100,000 words. Lexica and transcriptions are
available for these languages, and these were used to evaluate our
experimental systems that do no rely on such resources. The results
of both languages were analyzed and optimized during development,
so all results should be viewed as development set results.

4. UNIVERSAL PHONE RECOGNIZER

We begin the detailed descriptions of our approach with the univer-
sal phone recognizer. The acoustic and language models of the rec-
ognizer were trained using seven language corpora from different
sources: Assamese (Babel), Bengali (Babel), Dari (Transtac), Egyp-
tian Arabic (Callhome), English (Fisher), Mandarin (DARPA GALE
program), and Spanish (Callhome). This gave approximately 650
hours of audio.

We scored the phonetic recognition against phonetic references
generated from a forced alignment. All of our results are time-
mediated phone error rates, which were typically 3%–8% absolute
worse than the string-aligned phone error rates. Time-mediated scor-
ing was used because when dealing with high error rates and a vocab-
ulary of 58 phones, string alignment often introduced noise through
spurious alignments.

The phone set we used distinguishes most of the sounds de-
scribed as phonemically contrastive in the languages, but it also

merges acoustically similar sounds that may be contrastive. It does
not distinguish pulmonic and non-pulmonic consonants—thus, the
ejective consonants of Amharic are not distinguished from their pul-
monic counterparts. Consonants with a secondary place of articula-
tion are not distinguished from consonants with only a primary place
of articulation—thus, the pharyngealized consonants of Arabic are
not distinguished from their plain counterparts. The phone set distin-
guishes among all manners of articulation, but it merges several con-
trasts among places of articulation. For example, it does not distin-
guish the place of articulation between dental, alveolar, and retroflex
stops. The set contained 55 speech phones and 3 non-speech phones.

All acoustic models (AMs) were deep neural networks (DNN)
optimized for cross entropy with clustered triphone targets. For re-
ported results, we used DNN with 5 hidden layers and 1200 neu-
rons per layer. The front-end for most results was 13 mel-frequency
cepstral coefficient (MFCC) features along with deltas and double
deltas, and feature-space maximum likelihood linear regression (fM-
LLR) was used to adapt these features to the target data (unsuper-
vised) [12]. The results labeled “Language Specific” used 40 mel-
scaled filterbanks.

The language models (LMs) were trained on phonetic transcrip-
tions generated with forced alignments. We used bi-grams, as larger
n-grams performed worse. A bi-gram was trained separately for each
training language, and the seven individual bi-grams were combined
with uniform interpolation. Silence phones were included in the lan-
guage model (instead of uniform probability insertions as is typically
done in word decoding).

5. LINGUISTIC CONSTRAINTS

As discussed, many real-world languages without written resources
have existing linguistic studies. Studies typically describe the lan-
guage’s phonetic inventory, and our approach allows us to easily take
advantage of this by constraining the output of the recognizer to the
target language’s phone set.

Decoding can be further constrained by taking the language’s
syllable structure into account. Amharic has a particularly well-
defined syllable structure. It allows no more than one consonant
in the syllable onset position (except labialized consonants), and
no more than two consonants in other positions (e.g., (C)V(C)(C)).
Pashto allows for complex onsets consisting of up to three conso-
nants, and complex codas of up to two consonants (e.g., (C)(C)(C)V(C)(C)).
The sequence of consonants in Pashto’s onsets and codas is further
constrained, in part, by the sonority hierarchy and other similar
constraints. Even so, Pashto allows for a greater variety of syllables
than Amharic.

The phonetic and syllabic constraints were defined using the
Foma constraint language [13]. The constraints are compiled into fi-
nite state transducers, and the recognizer’s transducer was composed
with the constraint transducer to limit its output.

The results for the linguistic constraints are given in Table 1. As
one might expect, we see noticeable improvement by limiting the
phone set. Although this improvement is straightforward, it demon-
strates how this commonly available knowledge can be utilized by
our approach. The syllable constraint gives additional improvement
for Amharic. The improvement for Pashto is smaller, as Pashto has
more syllable variety than Amharic.

6. ADAPTATION BASED ON HUMAN INPUT

The second improvement to our recognizer came from adapting it
to a small amount of hand-generated phonetic transcriptions. The
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Table 1. Phonetic recognition results for linguistic constraints. Values are time-mediated phone error rates.

Constraint Amharic Pashto
None 76.3% 73.0%
Phone 75.1% 71.8%
Syllable 74.6% 71.5%

target-language audio was collected under real-world conditions, is
mostly narrow bandwidth, has background noise, and has dropped
samples. Creating even a small amount of phone-level transcriptions
on such data is a difficult task, even for a trained phonetician. How-
ever, native speakers find the audio intelligible for the most part, and
they can easily listen and respeak the utterances. We recorded na-
tive speakers respeaking the utterances with better audio quality in
a quiet environment, making these recordings much easier for the
linguists to transcribe phonetically. Respeaking has been shown to
increase transcription accuracy in other contexts, such as language
preservation [14, 15]. Three modes for repeating the utterance were
used:

Matched - Repeat the utterance, trying to match its speed and
pronunciation.
Slow - Repeat the utterance with lengthened phones and more
careful pronunciation. Phonological reductions are typically
suppressed.
Pauses - Pronounce each word matching the speed and pro-
nunciation of the original, but make a brief pause at each word
boundary. Cross-word phonological processes are typically
suppressed.

The linguist first listened to all three respoken versions and then
transcribed the matched and slow versions. The slow and pauses
versions were used to inform the transcription of the matched au-
dio, but many differences remained due to phonological reduction
and assimilation processes. The transcriptions for the matched and
pauses audio versions were then compared to ensure that any differ-
ences were truly reflected in the pronunciation and were not due to
transcription variability.

For respeaking, a set of utterances was randomly selected from
the training data. A native speaker listened to each utterance and,
if possible, repeated each utterance in the three modes described
above. An utterance was skipped if the audio clip contained no
speech, speech outside the target language, or was unintelligible. For
Amharic, 34 utterances were respoken and transcribed. For Pashto,
two speakers combined to respeak 92 utterances, and these were all
transcribed.

The universal acoustic model was adapted by re-training the
original model on the adaptation data. During adaptation, the fron-
tend fMLLR and tied states were kept the same. The language model
was adapted by using the adaptation data to train a small model, and
then linearly interpolating this small model with the universal model.

The results for adapting the recognizer are given in Table 2. We
first adapted the acoustic model using the original Babel audio to-
gether with the hand-generated transcriptions, and this result is la-
beled “Hand, Babel.” By combining the Babel audio with the au-
dio from the matched and pauses utterances recorded by our native
speaker, we had 97 utterances available for Amharic adaptation and
265 for Pashto (For each transcription we used three utterances: orig-
inal, matched, and pauses. Discrepancies in the totals are because a
few of the respoken modes were not recorded for some utterances.)
This combined set gave us additional improvement for Amharic, as

shown in the rows marked “Hand, All.” The results when adding
language model adaptation are given by the “LM Data” column.
“Hand” means adaptation with the hand-generated transcriptions.

To show the potential effect of a larger transcription effort, Ta-
ble 2 also gives results for adaptation using 30 minutes of audio with
forced alignment transcriptions, labeled “Forced, 30’.” 30 minutes is
450 utterances for Amharic and 385 for Pashto. A language-specific
recognizer was trained using the Babel audio data, transcripts, and
pronunciation dictionary for the certain language. Then phonetic
forced alignment was generated using the recognizer. As a limiting
case, the table has results for models trained using only target lan-
guage training data, labeled “Language Specific.” Forced alignments
from target language transcriptions were used for both the acoustic
and language models, and there was about 42 hours of audio for
Amharic and 96 for Pashto.

We additionally combined two of the adapted systems with
the syllable constraints from Section 5. These results are labeled
“Hand+gen.+const.” and “Forced, 30’+const.”

7. LEXICAL UNIT DISCOVERY EVALUATION AND
BASELINE

Next, we break from the discussion on phone recognition to describe
our lexical discovery evaluation metric, which was taken from [11].
This metric provides a rapid measurement of how well a speech rep-
resentation can associate examples of the same word types and dis-
criminate different word types, as well as to assess speaker indepen-
dence of the speech representation.

This evaluation metric is calculated as follows. Using the time-
aligned word reference transcripts of a target language data set, we
randomly sampled a set of spoken word examples with a minimum
character length of 5 in the surface form, denoted .
We then randomly sampled the following four sets of word pairs

from the data set [11]:

: Same word, same speaker (SWSP)

: Same word, different speakers (SWDP)

: Different word, same speaker (DWSP)

: Different word, different speakers (DWDP)

On this same target language data set, we then apply lexical unit
discovery to discover repeated patterns. For each word pair
in the four sets, we assigned a discovered repeated pattern (i.e., dis-
covered lexical unit) to , and a discovered lexical unit to

, if the discovered lexical unit and overlap at least 50%
of the duration of and , respectively. For each of these poten-
tial discovered units, the distance measure was
computed, where distance is defined by the particular lexical unit
discovery approach. If multiple discovered lexical units overlap the
duration of or , the distance was computed as the smallest dis-
tance between the discovered lexical units. If there is no overlapping
discovered lexical unit to or , then we assigned a distance of
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Table 2. Phonetic recognition results for adaptation. Percentages are time mediated phone error rate (TPER).

AM Adapt LM Adapt Amharic Pashto
None None 76.3% 73.0%
Hand, Babel None 71.8% 71.4%
Hand, All None 70.0% 71.5%
Hand, All Hand 68.0% 70.7%
Hand, All Hand+const. 67.2% 70.1%
Forced, 30’ Forced, 30’ 62.1% 64.3%
Forced, 30’+const. Forced, 30’+const. 62.0% 64.5%
Language Specific 53.3% 53.8%

infinity for the word pair . Then, given a threshold , we
can compute

(1)

We then computed the precision recall for SW, SWSP, and
SWDP as follows:

(2)

(3)

(4)

(5)

We then sampled through a series of values of and computed
the Precision-Recall Breakeven (PRB) point where
and are equal, and where and are
equal. Note that a high value indicates a good speaker-
dependent speech representation for spoken term discovery, and a
high value indicates a good speaker-independent speech
representation for this task.

7.1. Baseline Results

The baseline for our lexical discovery experiments was a DTW-
based search for repeated acoustic patterns using the algorithms pre-
sented in [9]. Different from earlier approaches of exhaustive DTW
searches across the entire similarity matrix, [9] used randomized al-
gorithms operating on acoustic features to produce sparse approxi-
mate similarity matrices much more efficiently in memory and com-
putational complexity. All DTW experiments were performed us-
ing the publicly available ZRTools:zero-resource speech discovery,
search, and evaluation toolkit [10].

The distance measure, , is the DTW distance
computed using cosine distance (one minus cosine similarity). This
distance measure is used to compute and as de-
scribed above. The baseline result using MFCC features is given in
Table 3.

Table 4 shows the word counts and sizes of the four sets
sampled from the time-aligned word transcripts of the two

evaluation data sets.

7.2. Robust Features

Although MFCC features are typically the standard for speech appli-
cations, they are often not the best choice in noisy conditions. Our

target language data from BABEL is collected in real-world environ-
ments and contains noise, and MFCCs are not necessarily a compa-
rable baseline to our or any method that is more robust to noise. We
address this by performing lexical discovery using DTW search us-
ing features that we have found to improve noise robustness in other
applications.

The first such feature is created using a deep neural network
auto-encoder bottle-neck model (DAE-BN) [16]. The DAE-BN sys-
tem is a five-hidden-layer, fully connected DNN system, with the
third hidden layer containing a bottleneck of sixty neurons. The re-
maining hidden layers had 1024 neurons. The input to the DAE-BN
system is 40 gammatone filterbank energies (GFBs) with an eleven
frame window, and the output is the same 40 GFBs but with a three
frame window. The network is trained using speech data from a
variety of languages. Features are generated from the fully trained
model using the activations of the bottleneck (third) layer.

The second set of robust features are Normalized Amplitude
Modulation Coeffients (NMC) [17]. The NMC feature captures and
uses the amplitude modulation (AM) information from bandlim-
ited speech signals. NMC is motivated by AMs of subband speech
signals playing an important role in human speech perception and
recognition. NMCs are obtained by using the approach outlined
in [17], in which the features are generated from tracking the AM
trajectories of subband speech signals in a time domain.

Table 3 gives lexical discovery results for DTW-based search
using the BN-DAE and NMC features. We observed a significant
improvement on the and scores from our robust
NMC features and BN-DAE features, compared to the MFCC fea-
tures. This improvement is markedly large on cross-speaker perfor-
mance.

8. PHONETIC-BASED LEXICAL UNIT DISCOVERY

We now describe our approach of automatic lexical unit discovery.
The approach takes the recognized phone sequence as input and dis-
covers lexical units by finding repeated substrings. By recursively
applying longest repeated substring detection algorithm using suffix
array, we could efficiently detect repeated substrings. For detecting
longest repeated substring using suffix array, given an input string,
we first sort all of its suffixes in the suffix array. Then for each two
adjacent suffixes in the sorted suffix array, we count the length of the
common prefix while avoiding counting the overlapped part. The
longest repeated prefix appearing first on the original input string is
the longest repeated substring.

We extended the standard repeated substring detection algorithm
with two modifications. First, we used the silence labels in the phone
recognition output and the sentence boundaries of the audio seg-
ments to be recognized as boundaries of lexical units. Second, the
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Table 3. Evaluation of MFCC features and our robust NMC features and features created using a deep neural network auto-encoder bottle-
neck model (DAE-BN), for lexical unit discovery.

Feature Amharic Pashto

MFCC 0.33 0.14 0.35 0.16
NMC 0.47 0.40 0.48 0.40

DAE-BN 0.42 0.38 0.46 0.39

Table 4. Statistics of the evaluation data for lexical unit discovery.

Data Set Word Count
Amharic 47,292 3,679 123,763 386,150 1,016,263
Pashto 94,721 3,567 100,939 308,632 1,037,561

algorithm was extended to fuzzy matching by using the substitutable,
deletable, and insertable phones for the target language, as defined
by linguistic knowledge. We used this extension to model pronunci-
ation variability.

We also applied linguistic knowledge of syllable phonotactics,
i.e., syllable constraints, to lexical unit discovery. This utilized the
same finite state transducers that were used to constrain the phone
recognition output. The syllable constraints were used to filter the
discovered units from fuzzy substring matching, that is, only patterns
compatible with the target language phonotactics are accepted as
possible “words”. These syllable constraints could also help further
constrain the boundaries of lexical units, in addition to the above-
mentioned boundary constraints.

We described the lexical unit discovery evaluation metric in Sec-
tion 7. For our phonetic-based lexical unit discovery, we also first
ran our phonetic-based lexical unit discovery on the evaluation data
sets, then assigned discovered repeated phone sequences to evalu-
ation word pairs with the described procedure in Section 7. The
distance measure is defined as the Levenshtein
distance between the two assigned discovered phone sequences of
lexical units and , divided by the maximum of the lengths of
the two phone strings hence converted to a value in [0,1].

Related work to our approach of identifying lexical units from
unsegmented strings of symbols includes [18, 19, 20, 21]. Some
prior work models word segmentation based on the distribution of
phoneme sequences in the input (e.g., [20]). Some prior work ex-
plores synergistic interactions between multiple levels of linguistic
structures (e.g., [19]).

8.1. Experiments

Table 5 shows the efficacy of employing boundary constraints from
sentence boundaries and silence labels generated by the phone rec-
ognizers, exploring linguistically defined confusable phones, and ap-
plying the syllable constraints. As shown in the table, using the
boundary constraints and the syllable constraints made a significant
improvement on the lexical unit discovery performance, whereas us-
ing the linguistically defined confusable phones for fuzzy matching
hasn’t been able to make a significant impact. If not specified oth-
erwise, the lexical unit discovery evaluation results in this paper are
always based on applying all the knowledge in discovery, that is,
boundary constraints, linguistically defined confusable phones, and
syllable constraints.

Table 6 shows the and values for the Amharic
and Pashto development sets from the un-adapted phone recognizer,
the best performing phone recognizers adapted on the manually cre-
ated phonetic transcriptions and employing syllable constraints, and
the phone recognizers trained on the training set of the target lan-
guages. The time-mediated phone recognition error rate (TPER) for
each output is also shown with and . First, we
observed that our lexical unit discovery approach based on phone
recognition output shows strong speaker independence, as
is the same as , for both target languages. Second, we ob-
served that and scores are correlated with the
phone recognition accuracy. Third, the discovered lexical units are
associated with the hypothesized phone sequences, so they are inter-
pretable by linguists and could be explored for iterative improvement
of both the recognizer and lexical discovery.

9. DISCUSSION

Our phonetic approach for lexical discovery performs similar to
zero-resource methods that use acoustic-only pattern matching. Ide-
ally, our human-assisted discovery methods would outperform exist-
ing zero-resource methods. However, unlike DTW based methods,
our approach creates a pronunciation lexicon that is immediately
interpretable by linguists. We have also shown that the phonetic
approach is viable, and this creates an alternative path for future re-
search and possible system combination with acoustic-only results.

To further improve our lexical unit discovery approach, we plan
to (1) explore phone confusion matrices from the phone recognizer
for enhancing the fuzzy substring matching; (2) explore linguistic
knowledge for word and syllable composition for lexical unit dis-
covery; and (3) importantly, explore approaches to model variability
(i.e., different phone sequences for the same words) (e.g., the noisy-
channel model as in [3]), and approaches to jointly model sub-lexical
and lexical units (e.g., the adaptor grammar as in [19]).

We also will gather feedback from the native speakers by giving
them simple tasks that evaluate the accuracy of our discovered units.
We will then explore using this data to iteratively improve both the
recognizer and lexical discovery.
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Table 5. Efficacy of employing boundary constraints, exploring linguistically defined confusable phones, and the syllable constraints for
lexical unit discovery performance.

Phone Recognizer Amharic Pashto
TPER (%) TPER (%)

Baseline (NO adaptation) 77.0 0.19 0.19 74.0 0.18 0.18
+ sent boundary + silence info 77.0 0.23 0.23 74.0 0.22 0.22

++ ling. phone confusions 77.0 0.25 0.25 74.0 0.23 0.23
+++ syllable constraints 77.0 0.28 0.28 74.0 0.25 0.25

Table 6. Evaluation of lexical unit discovery performance based on un-adapted phone recognizers, best adapted phone recognizers with
syllable constraints, and language-specific phone recognizers.

Phone Recognizer Amharic Pashto
TPER (%) TPER (%)

Baseline (NO adaptation) 77.0 0.28 0.28 74.0 0.25 0.25
Best Adapted + const. 67.2 0.40 0.40 70.7 0.37 0.37
Language Specific 53.3 0.47 0.47 53.8 0.46 0.46

IARPA-babel103b-v0.4b; and Pashto, IARPA-babel104b-v0.4bY.
FullLP training sets were used.

Supported by the Intelligence Advanced Research Projects Ac-
tivity (IARPA) via the Air Force Research Laboratory. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon. Disclaimer: The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of IARPA, AFRL, or the U.S. Government

69



11. REFERENCES

[1] Aren Jansen, Ken Church, and Hynek Hermansky, “Towards
spoken term discovery at scale with zero resources,” in Pro-
ceedings of Interspeech, 2010.

[2] Herman Kamper, Aren Jansen, Simon King, and Sharon Gold-
water, “Unsupervised lexical clustering of speech segments
using fixed dimensional acoustic embeddings,” in Proceedings
of SLT, 2014.

[3] Chia-ying Lee, Timothy O’Donnell, and James Glass, “Unsu-
pervised lexicon discovery from acoustic input,” Transactions
of the Association for Computational Linguistics, vol. 3, pp.
389–403, 2015.

[4] “The zero resource speech challenge (special sessions at inter-
speech 2015),” in Interspeech, 2015.

[5] Stavros Tsakalidis, Ruey-Chang Hsiao, Damianos Karakos,
Timothy Ng, Sudhir Ranjan, Guruprasad Saikumar, Le Zhang,
Long Nguyen, Richard Schwartz, and John Makhoul, “The
2013 BBN vietnamese telephone speech keyword spotting sys-
tem,” in Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on. IEEE, 2014, pp.
7829–7833.

[6] Anton Ragni, Kate M. Knill, Shakti P. Rath, and Mark J. F.
Gales, “Data augmentation for low resource languages,” in
Proceedings of Interspeech, 2014.

[7] Marelie Davel and Etienne Barnard, “The efficient generation
of pronunciation dictionaries: human factors during bootstrap-
ping,” in ICSLP, 2004.

[8] M. Davel and E. Barnard, “Pronunciation predication with de-
fault and refine,” Computer Speech and Language, vol. 22, pp.
374–393, 2008.

[9] Aren Jansen and Benjamin Van Durme, “Efficient spoken term
discovery using randomized algorithms,” in Proceedings of
ASRU, 2011.

[10] Aren Jansen, Ben Van Durme, and Greg Sell, “Zrtools:
Zero-resource speech discovery, search and evaluation toolkit,”
https://github.com/arenjansen/ZRTools, Accessed: 2017-07-
25.

[11] Michael A. Carlin, Samuel Thomas, Aren Jansen, and Hynek
Hermansky, “Rapid evaluation of speech representations for
spoken term discovery,” in Proceedings of Interspeech, 2011.

[12] M.J.F. Gales, “Maximum likelihood linear transformations for
hmm-based speech recognition,” Computer Speech and Lan-
guage, vol. 12, pp. 75–98, 1998.

[13] Hulden Mans, “Foma: a finite-state compiler and library,” in
Proceedings of the EACL 2009 Demonstrations Session, 2009,
pp. 29–32.

[14] Anthony C. Woodbury, “Defining documentary linguistics,”
Language Documentation and Description, vol. 1, 2003.

[15] Steven Bird, Florian R Hanke, Oliver Adams, and Haejoong
Lee, “Aikuma: A mobile app for collaborative language docu-
mentation,” in Proceedings of the 2014 Workshop on the Use
of Computational Methods in the Study of Endangered Lan-
guages, 2014, pp. 1–5.

[16] V. Mitra, D. Vergyri, and H. Franco, “Unsupervised learning
of acoustic units using autoencoders and kohonen nets,” in (to
appear) Proceedings of Interspeech, 2016.

[17] V. Mitra, H. Franco, M. Graciarena, and A. Mandal, “Normal-
ized amplitude modulation features for large vocabulary noise-
robust speech recognition,” in Acoustics, Speech and Signal
Processing (ICASSP), IEEE International Conference on, Ky-
oto, Japan, 2012.

[18] Zellig Harris, “From phoneme to morpheme,” Language, vol.
31, pp. 190–222, 1995.

[19] Mark Johnson, Thomas L. Griffiths, and Sharon Goldwater,
“Adaptor grammars: A framework for specifying composi-
tional nonparametric Bayesian models,” in Advances in Neural
Information Processing Systems, 2006, pp. 641–648.

[20] Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson,
“A Bayesian framework for word segmentation: Exploring the
effects of context,” Cognition, vol. 112, pp. 21–54, 2009.

[21] Benjamin Borshinger and Mark Johnson, “Exploring the role
of stress in Bayesian word segmentation using adaptor gram-
mars,” Transaction of ACL, vol. 2, pp. 93–104, 2014.

70




